

City of Hamilton

[THIS PAGE IS INTENTIONALLY LEFT BLANK]

TABLE OF CONTENTS

1.0 In	troduction 1	
1.1	Background 1	
1.2	Site Location & Topography 1	
1.3	Proposed Development 1	

2.0 Se	ervicing Analysis	3
	0 5	5
2.1	Water Servicing	3
2.2	Sanitary Servicing	4
2.3	Stormwater Management	4
2.	3.1 Existing Conditions	4
2.	3.2 Stormwater Criteria	5
2.	3.3 Stormwater Design	5
3.0 Ca	onclusions	7

Figures

Tables

Table 1: Hydrant Testing Data, Page 3	3
Table 2 – Allowable Outflows from Subject Lands	6
Table 3 – Proposed Stormwater Discharge Conditions	6

1. Introduction

1.1. Background

LandSmith Engineering & Consulting Ltd. have been retained by 1333664 Ontario Inc. for the completion of a *Functional Servicing Report* in support of the development of three properties located at 1177, 1183 and 1187 West 5th Street in the City of Hamilton. The purpose of this report is to illustrate how the development of these properties from vacant land and single-family homes to the proposed ten-storey, 215-unit condo apartment can be accommodated by the available municipal services adjacent to the site.

1.2. Site Location & Topography

The site is located on the east side of West 5th Street and entails the two single family homes which are known municipally as 1177 & 1183 West 5th Street and a vacant grassed area municipally know as 1187 West 5th Street. Figure 1 on the following page illustrates the exact location of the site.

A topographic survey illustrating the existing conditions of the lands can be seen on the Grading Plan in Appendix 'C' for reference purposes. As can be seen through review of the survey, the western half of the site slopes from northeast to south southwest and directs stormwater runoff by sheet flow to West 5th Street right of way. The eastern portion of the site slopes from northwest to the southeast and conveys runoff by sheet flow to the adjacent commercial parking lot the east of the subject lands.

The portion of West 5th Street fronting the site slopes to the south. There is sidewalk along the east side of West 5th street fronting the site. Approximately half of the site fronting West 5th Street has curb and gutter which conveys flows down West 5th Street into the roadside ditch to the south. The other half of the site frontage contains a roadside ditch with no curb. The stormwater is conveyed by the roadside ditch to a culvert that crosses West 5th Street and is conveyed to the William Connell Stormwater Management Pond to the northwest.

1.3. Proposed Development

The current development proposal will entail the construction of a ten-storey condo apartment with 215 proposed units. To accommodate the City of Hamilton parking requirement ratio 24 surface parking stalls in the areas adjacent to the building and 208 underground parking stalls on 2 underground levels have been provided. The Site Plan prepared by KNYMH Architecture Solutions

which illustrates the proposed layout of the site has been attached to this report within Appendix 'A' for reference purposes. This Site Plan was the basis of the following engineering analysis.

Figure 1: Site Location Plan

2. Servicing Analysis

2.1. Water Servicing

There is an existing 300mm diameter watermain along the frontages of the site which may be utilized for the construction of a service connection to the proposed building. A Preliminary Site Servicing Plan has been completed for submission with this report and is contained within Appendix 'C' for reference purposes. This plan illustrates the location of the proposed service for the building which is intended to be along West 5th Street where the watermain is in the boulevard and can be accessed without the necessity of the completion of a road-cut.

The existing 300mm diameter watermain is located within the east boulevard of West 5th Street. It is proposed to connect to the 300mm watermain at the south end of the property with a 150mm water service to provide both domestic and fire supply to the apartment building.

Hydrant flow testing data for the three nearest hydrants was obtained through The City of Hamilton the data was collected on June 20, 2014. The results of this recent flow testing are contained within the table below.

Hydrant ID	Address	Pressure Zone	Test Date	Static Pressure (psi)	Residual Pressure (psi)	Test Flow (IGPM)	~Flow @ 20psi (IGPM)
HC66H001	1073 West 5 th St.	6	2014-06-20	68	65	910	4,067
HC66H005	1177West 5 th St.	6	2014-06-20	60	56	1,000	3,467
HC66H004	West 5 th St.	6	2014-06-20	60	56	1,030	3,571

Table 1: Hydrant Testing Data

This recent flow testing indicates that there can be expected to be (at minimum) 218.7 L/s (3467 IGPM) of available flow from the local 300mm watermain on West 5th Street for fire protection purposes at a system pressure of 20 psi.

The City of Hamilton have recently adjusted their requirements for the calculation of Fire Demands from the use of the Fire-Underwriter's Survey (1999) to a target-based requirement which is being used in conjunction with the Ontario Building Code (OBC) fire-flow calculation requirements. The current City target for Fire-flow for multiple-residential units with greater than 3 units is 150 L/s – this value was compared with a calculation of the required fire-flow based on the OBC Method. The description of the OBC calculation for fire-flow is contained within Appendix 'B' for reference. As can be seen the calculation results in the same fire-flow requirement of 150 L/s as the City's target flow method.

In addition to fire-flow demands, domestic water demands were calculated using the fixture unit method and Table 7.6.3.2.A of the Ontario Building Code. Fixture unit counts were provided by KNYMH Architecture Solutions and can be found in Appendix 'B'. It was determined that the proposed building has 1849 fixture units in use which is equivalent of a peak domestic flow rate of 18.8 L/s. counts were provided by Given the required calculation methods it appears that the local hydrants are sufficient to provide for both the peak domestic usage and the peak required fire-flow in this location.

2.2. Sanitary Servicing

There is an existing sanitary trunk sewer within West 5th Street which currently services the two single family dwellings at 1177 and 1183 West 5th Street which can be utilized for the servicing of the proposed building. This sanitary sewer is illustrated on Urbex Engineering's West 5th Street Plan and Profile which has been included in Appendix 'A' for reference purposes. The sewer has been designed for the entire area west of West 5th Street (Sheldon's Gate subdivision) and that at the present time there will be ample capacity for this development. At the frontage of the property the sanitary sewer is 375mm in diameter and installed at a slope of 0.35% which is sufficient for the servicing from the proposed building.

This sanitary trunk sewer has been designed as part of the Mewburn & Sheldon Neighborhoods Master Serving Plan to accommodate the subject lands as can be seen in the Master Servicing Plan located in Appendix 'A' for reference. Therefore, the existing sanitary sewer will have sufficient capacity to service the proposed development.

Based on the Ontario Building Code the calculation for expected generation of sanitary effluent based on the proposed building can be found in Appendix 'B'. The estimated peak instantaneous flow for the proposed apartment is 8.90 L/s.

2.3. Stormwater Management 2.3.1. Existing Conditions

The topography of the existing site has been described above in Section 1.2 and the topographic survey for the site is contained within Appendix 'A' for reference purposes. Based on the topographic information *Figure S1 – Existing Drainage Conditions* was created which described the existing drainage pattern of the site. This figure is contained within Appendix 'C' for reference purposes.

As can be seen, under existing conditions stormwater runoff from the site discharges to two locations. The rear (east) of the single-family lots and vacant drains via sheet flow to the adjacent commercial parking lot to the east (Area E2).

The front of the property adjacent to West 5th Street sheet flows towards the roadway and is collected by roadside ditches (Area E2). The West 5th Roadsides ditches flow to the south and ultimately flow into the existing William Connell Stormwater Management Pond.

2.3.2. Stormwater Criteria

The subject lands have been included in several drainage assessment completed by the City of Hamilton; in 2011 in the AMEC report 'West Mountain Drainage Assessment' and 2016 by IBI Group later refined the design the subject lands were included as Area **C-67F** and can be seen in The City of Hamilton Plan DR1 "William Connell City Wide Park Updated Future Ultimate Conditions Subcatchment Boundary Plan referenced in Appendix 'A'.

For the development of Sheldon's Gate Community Phase 1, Urbex Engineering designed the municipal sewers which included sewers on West 5th Street fronting the proposed development and allocated conveyance for the 100-year storm event within the proposed sewers and stormwater management system for the subject lands. The allowable 100-year flows from the subject lands can be seen in the Ultimate Overall Storm Drainage Area Plan attached in Appendix 'C' with detailed storm sewer design calculations (Urbex, 2022) in Appendix 'C'. The municipal sewers direct flows from West 5th Street through the Sheldon's Gate Community to the William Connell SWM Pond where stormwater quantity and quality controls will be adequately provided.

2.3.3. Stormwater Management Design

SWM Quantity Controls:

The peak runoff from the site under the developed condition will be limited to allowable flow for the subject lands that was designed as part of the Sheldon's Gate Phase 1 Community. Urbex's Ultimate

Storm Drainage Area Plan shows an allowable 100-year outflow for 1177 and 1183 West 5th Street (Area C-68f(i)) of 0.89m3/s and 0.098m3/s for 1187 (Area C-68f(h)). The sum of these flows represents the total allowable flow for the subject property of 0.187m³/s as can be seen in Table 2 below.

Municipal Address	1177 & 1183 West 5th St	1187 West 5 th St	Total
Catchment ID	C-68F(i)	C-68F(h)	Allowable Discharge (m ³ /s)
5 Year Storm Allowable Flow (m ³ /s)	0.050	0.056	0.106
25 Year Storm Allowable Flow (m ³ /s)	0.71	0.79	0.150
100 Year Storm Allowable (m ³ /s)	0.089	0.098	0.187

Table 2 – Allowable Outflows from Subject Lands

Figure S2 contained in Appendix 'D' illustrates the post-development catchment area which will be created through the grading of the site and construction of the proposed building and parking areas.

Hydrologic Analysis of the site in the post-development condition was completed using MIDUSS v2 and the Chicago 3-hour storm to ensure the total post-development discharge does not exceed allowable levels.

The following table summarizes the uncontrolled outflow from catchment A1.

Return Period (Yr.)	Total Discharge (Uncontrolled) (m ³ /s)	Allowable Discharge(m ³ /s)
5	0.082	0.106
25	0.127	0.150
100	0.180	0.187

Table 3 - Proposed Stormwater Discharge Conditions

As can be seen, the total uncontrolled discharge from the proposed development will be below the allowable discharge levels. No on-site quantity controls will be required for this development.

SWM Quality Controls:

Quality control measures will be provided by the existing downstream William Connell Stormwater Management Pond. The William Connell SWM Pond provides Level 1 (Enhanced) quality controls per the Ontario Ministry of Environment (MOE) Stormwater Management Planning and Design Manual, 2003. Therefore, no on-site quality controls will be required for this development.

3. Conclusions

In conclusion, based on the foregoing analysis we recommend that the development can be serviced in accordance with the requirements of the City of Hamilton as follows:

- Water servicing can be provided through connection to the adjacent 200mm watermain along West 5th Street where indicated. There is ample water available for domestic usage and fireflows based on the recently completed hydrant flow-tests.
- 2. There is an available sanitary sewer located on West 5th Street from which the proposed building can be serviced. The 300 mm diameter pipe has capacity to service the increased density due to the nature of the development.
- Stormwater runoff from the site may be connected to the local municipal 525 mm storm sewer on West 5th Street. Quantity and quality control will be provided by the existing William Connell Stormwater Management Pond.

Thank you for your consideration of the above Functional Servicing Report, should you have any questions or require clarification with respect to any part of the above please do not hesitate to contact the undersigned.

Respectfully submitted,

Indrew Smith

Andrew Smith, P. Eng. Principal & Director 289-775-9374 andrew@landsmithec.com

Attachments:

Appendix 'A' - <u>Background Information</u> Site Plan - KNYMH Architecture Solutions West 5th Plan and Profile -Urbex Engineering Ltd. Updated Future Ultimate Conditions Subcatchment Boundary Plan - IBI Group Mewburn & Sheldon Neighborhoods Mater Servicing Plan Class EA - SCN Lavalin/MTE

Appendix 'B' – <u>Water/Wastewater Servicing Calculations</u> City of Hamilton Hydrant Testing Data Domestic Water Usage Calculations Required Fire-Flow Calculations Fire Separation Distances – Figure W1 Fixture Unit Counts - KNYMH Architecture Solutions Sanitary Generation Assessment

Appendix 'C' – <u>SWM Analysis</u>

Pre-Development Storm Drainage Area – Figure S1 Post-Development Storm Drainage Area – Figure S2 MIDUSS V2 Output Files Sewer Design Calculations – Urbex Engineering Ltd. Ultimate Storm Drainage Area Plan -Urbex Engineering Ltd.

- Appendix 'D' <u>Site Design Engineering Plans</u> Site Servicing and Sediment and Erosion Control Plan Grading Plan
- Appendix 'E' City of Hamilton Existing Infrastructure Drawings

Site Plan – KNYMH Architecture Solutions

West 5th Plan and Profile -Urbex Engineering Ltd.

Updated Future Ultimate Conditions Subcatchment Boundary Plan - IBI Group

Mewburn & Sheldon Neighborhoods Mater Servicing Plan Class EA – SCN Lavalin/MTE

	1B	2B	Total	Common Area	Suite A
1st	13	5	18	5793.780	12665.
2nd	16	7	23	1950.730	16303.
3rd	16	7	23	1951.730	16303.
4th	16	7	23	1952.730	16303.
5th	16	7	23	1953.730	16303.
6th	16	7	23	1954.730	16303.
7th	18	4	22	1922.760	14101.
8th	18	4	22	1923.760	14101.
9th	13	6	19	1926.200	12874.
10th	13	6	19	1927.200	12874.
Total	155	60	215	23257.350	148136
	72%	28%		14%	86%

FILE:J:\36895_WCCW_Park\5.9 Drawlngs\59ctvll\layouts\09_DR1.dwg LAYOUT:DR1 LAST SAVED BY:Eden.lee, February 17, 2016 1:51:30 PM PLOTTED BY:Eden Lee February 18, 2016 11:27:27 AM

 $\label{eq:FileNAME:I:MACLAREN\Project\331410\40-ENG\4E-ENV\SR-Study\ Report\First\ Draft\Figures\1410-107.DWG\ 04/07/19$

APPENDIX 'B' – Water/Wastewater Servicing Calculations

City of Hamilton Hydrant Testing Data Domestic Water Usage Calculations Required Fire-Flow Calculations Fire Separation Distances – Figure W1 Fixture Unit Counts – KNYMH Architecture Solutions Sanitary Generation Assessment

Summary of City-wide Hydrant Testing - Data as of January 7, 2015

Hydrant ID	Address	Pressure Zone	Date of Most Recent Two-hydrant Test as recorded in Hansen	Static Pressure (psi)	Residual Pressure (psi)	Test Flow (Imperial Gallons per minute)	DS R	DS R2	Theoretical Flow (IGPM) available at 20 psi residual
HC66H001	1073 WEST 5TH ST	6	20-06-2014 9:25:43 AM	68	65	910	3	48	4067
HC66H004	1177 WEST 5TH ST	6	20-06-2014 8:50:13 AM	60	56	1,000	4	40	3467
HC66H005	WEST 5TH ST	6	20-06-2014 8:35:14 AM	60	56	1,030	4	40	3571

DOMESTIC WATER USEAGE REQUIREMENTS

Project: 1177-1187 West 5th Method: Fixture Unit Method, Per OBC Table 7.6.3.2.A

Fixtures: The number of fixtures was estimated based on discussions with the site owner and his servicing expectations, then rounded up for the sake of a conservative analysis.

<u>Amount</u>	<u>Fixture Type</u>	<u>Fixture Units Per</u>	<u>Total</u>	
275	Private Bathroom Group	3.6	990	
204	Kitchen Sink	1.4	285.6	
204	Dishwasher	1.4	285.6	
1	Public Bathroom Group	2.2	2.2	
204	Clothes Washer	1.4	285.6	
	Total:		1849	1849

1 - Reference Table 7.6.3.2.A, Ontario Building Code

Hydraulic Load: Fixture units are then transferred to Hydaulic Load based on Ontario Building Code Table 7.4.10.5.

Column 1	Column 2	Column 3	Column 4
Fixture Units in service	Max Drainage Rate (Gal/m)		
	Col. 1	Col. 1 × 10	Col. 1 × 100
100	53	174	900
90	51	164	835
80	49	153	750
70	47	140	680
60	44	128	600
50	41	115	520
40	38	102	435
30	33	88	350
20	27	72	262
10	21	53	174

Maximum hydraulic load is estimated to be 249 (248.71) Imperial Gallons / Minute

1849 Fixture Units = 249 GPM (IMP) = 18.8 L/s

The estimated maximum hydraulic load for the proposed building is 18.8 Liters per second.

Date: 2022-05-05

FIRE FLOW DEMAND REQUIREMENTS

Project: 117-1187 West 5th Street, Hamilton

Method: OFM-TG-03-1999 FIRE PROTECTION WATER SUPPLY GUIDELINE FOR PART 3 IN THE ONTARIO BUILDING CODE http://www.mcscs.jus.gov.on.ca/english/FireMarshal/Legislation/TechnicalGuidelinesandReports/TG-1999-03.html

Formula: $Q = K \times V \times S_{Tot}$ Where: Q = minimum supply of water in litres K = water supply coefficient (Table 1) V = total building volume in cubic meters $S_{Tot} = total of spacial coefficient tables$

Volume (V)

olume (V)			
	Area (m ²)	Height (m)	Volume (m ³)
Ground Floor Area:	1714.66	3.7	6344.2
2nd to 6th Floor	1695.91	16	27134.6
7th to 8th Floor	1488.72	6.4	9527.8
9th to 10th Floor	1375.01	6.7	9212.6
		Σ	52219.2

Total Volume (V) = 52219.2 (cu.m)

Water Supply Coefficient (K)

K: 18

OBC Part: C (Residential)

Construction Type: Building is of combustible construction with fire separations and fire-resistance ratings provided in accordance with Subsection 3.2.2. of the OBC, including loadbearing walls, columns and arches. Noncombustible construction may be used in lieu of fire-resistance rating where permitted in Subsection 3.2.2. of the OBC.

Spacial Coefficients (S)

Required Flow Rate =

	Dist	ance (m)
S_1	0	23.9 (North)
S ₂	0	151.9 (East)
S_3	0	41.9 (South)
S_4	0	52.69 (West)

 $S_{Tot} = 1.0 + S_1 + S_2 + S_3 + S_4 = 1$

9,000

150

1980

L

L/Min

L / Sec

GPM (IMP)

Table 2:

Building Code,	Required Minimum Water Supply Flow								
Part 3 Buildings	Rate (L/min.)								
One-storey building with	1800								
exceeding									
600m ² (excluding F-1									
occupancies)									
All other buildings	2700 (If $\mathbf{Q} \le 108,000L$) ⁽¹⁾								
	3600 (If $\mathbf{Q} > 108,000L$ and $\leq 135,000L$) ⁽¹⁾								
	4500 (If $\mathbf{Q} > 135,000L$ and $\leq 162,000L$) ⁽¹⁾								
	5400 (If $\mathbf{Q} > 162,000L$ and $\leq 190,000L$) ⁽¹⁾								
	6300 (If $\mathbf{Q} > 190,000L$ and $\leq 270,000L$) ⁽¹⁾								
	9000 (If Q > 270,000L) ⁽¹⁾								

	SUITE TYPES PER FLOOR & PLUMBING FEATURES																	
			# OF BED	ROOMS						FLOOR					US VIS			
Name	SUITE AREA SQ FT	Area	1 Bed Units	2 Bed Units	FIRST	SECOND	THIRD	FORTH	FIFTH	SIXTH	SEVENTH	EIGHTH	NINTH	TENTH	UNIT BATHROOM	KITCHEN SINK	DISHWASHER	LAUNDRY
TYPE 1	612 SF	56 m²	68	0	4	6	6	6	6	6	9	9	8	8	68	68	68	68
TYPE 1B	637 SF	54 m²	13	0	0	1	1	1	1	1	3	3	1	1	13	13	13	13
TYPE 2	694 SF	64 m²	0	10	1	1	1	1	1	1	1	1	1	1	20	10	10	10
TYPE 3	611 SF	57 m²	1	0	1	0	0	0	0	0	0	0	0	0	1	1	1	1
TYPE 3B	729 SF	67 m²	0	9	0	1	1	1	1	1	1	1	1	1	18	9	9	9
TYPE 4	919 SF	85 m²	0	1	1	0	0	0	0	0	0	0	0	0	2	1	1	1
TYPE 5	914 SF	85 m²	0	1	1	0	0	0	0	0	0	0	0	0	2	1	1	1
TYPE 6	852 SF	68 m²	0	6	1	1	1	1	1	1	0	0	0	0	12	6	6	6
TYPE 7	632 SF	58 m²	6	0	1	1	1	1	1	1	0	0	0	0	6	6	6	6
TYPE 8	875 SF	81 m²	0	6	1	1	1	1	1	1	0	0	0	0	12	6	6	6
TYPE 9	747 SF	69 m²	18	0	3	3	3	3	3	3	0	0	0	0	18	18	18	18
TYPE 9B	724 SF	67 m²	6	0	1	1	1	1	1	1	0	0	0	0	6	6	6	6
TYPE 9C	563 SF	52 m²	4	0	0	0	0	0	0	0	1	1	1	1	4	4	4	4
TYPE 10	659 SF	61 m²	1	0	1	0	0	0	0	0	0	0	0	0	1	1	1	1
TYPE 11	813 SF	75 m²	0	9	0	1	1	1	1	1	1	1	1	1	18	9	9	9
TYPE 12	776 SF	72 m²	9	0	0	1	1	1	1	1	1	1	1	1	9	9	9	9
TYPE 12B	949 SF	88 m²	0	2	0	0	0	0	0	0	0	0	1	1	4	2	2	2
TYPE 13	910 SF	84 m²	0	5	0	1	1	1	1	1	0	0	0	0	10	5	5	5
TYPE 13B	747 SF	69 m²	0	4	0	0	0	0	0	0	1	1	1	1	8	4	4	4
TYPE 14	618 SF	57 m²	2	0	0	0	0	0	0	0	1	1	0	0	2	2	2	2
TYPE 15	744 SF	69 m²	0	2	0	0	0	0	0	0	1	1	0	0	4	2	2	2
TYPE 16	948 SF	88 m²	0	7	0	1	1	1	1	1	0	0	1	1	14	7	7	7
TYPE 17	701 SF	65 m²	5	0	0	1	1	1	1	1	0	0	0	0	5	5	5	5
TYPE 18	938 SF	87 m²	0	9	0	1	1	1	1	1	1	1	1	1	18	9	9	9
TOTAL			133	71	16	22	22	22	22	22	21	21	18	18	275	204	204	204

KNYMH INC. 1006 SKYVIEW DRIVE • SUITE 101 BURLINGTON, ONTARIO • L7P 0V1 P 905.639.6595 F 905.639.0394 info@knymh.com www.knymh.com											
9 m											
	revision description	CK AND VERIFY ALL DIMENSIONS AND JOB DCEEDING WITH WORK	AT THE COMPLETION OF THE ARCHITECTS AT THE COMPLETION OF THE WORK	ING FROM DRAWINGS NOT SPECIFICALLY MARKED IST ASSUME FULL RESPONSIBILITY AND BEAR COSTS OR DAMAGES RESULTING FROM HIS OR HER WORK.							
	no. (dd.mm.yy) date	CONTRACTOR MUST CHE CONDITIONS BEFORE PRO	ALL DRAWINGS AND SPEC AND MUST BE RETURNED	THE CONTRACTOR WORK "FOR CONSTRUCTION" ML FOR ANY CORRECTIONS (
BUILDING P NOT FOR (ERMIT CONST PERMI	NUM IRUCT T	BER 10N								
THIS INCOMPL USED APPR CONSTRU USE E SUBCON AND C PROVIDE COOR	WITHOLIT PERMIT THIS DOCUMENT IS INCOMPLETE AND MAY NOT BE USED FOR REGULATORY APPROVAL, PERMIT OR CONSTRUCTION AND ARE FOR USE BY CONSULTANTS, SUBCONSULTANTS, OWNER AND CONTRACTORS TO PROVIDE THEIR INPUT TO THE COORDINATION OF THIS DOCUMENT.										
Project V PF 1187 H drawing she	project VALVASORI PROPERTIES 1187 WEST 5TH STREET HAMILTON, ON										
SUIT FLOO F scale	E T R & EAT	YPE: PLU URI I ^{orier}	S PE IMB ES	ER ING							
drawn by KNYMł plot date 2022-05-	H-02										
project no. 1900	2	draw S	ving na	401							

SANITARY GENERATION ASSESSEMENT

 Project:
 1177-1187 West 5th

 Method:
 Ontario Building Code (OBC), 8.2.1.3.A. & 3.1.17.1

Based on the Ontario Building Code the calculation for expected generation of sanitary effluent based on the proposed building is as follows:

Using Table 8.2.1.3.A 'Residential Occupancy' Apartments, Condominiums, Other Multi-family dwellings – 275 L / day / person.

Section 3.1.17.1 'Occupant Load Determination' clause (b), *"two persons per sleeping room, or sleeping area in a dwelling unit or suite"*

<u>Residential Units:</u>	1 Bedroom Units: 131 x 2 persons = 262 persons 2 Bedroom Units: 71 x 4 persons = 284 persons Total persons = 262 + 284 = 546 persons
	275 L/day/ person x 546 persons = 150,150 L/day = 1.75 L/s
<u>Commercial Area:</u>	Per water closet = 1230 L/day 2 Water closets (estimated) = 2460 L/Day = 0.03 L/s

Total Wastewater Generation = 1.78 L/s, Peaking Factor = 5x, Estimated Peak Instantaneous Flow = 8.90 L/s

APPENDIX 'C' – SWM Analysis

Pre-Development Drainage Area - Figure S1 Post-Development Drainage Area - Figure S2 MIDUSS v2 Output Files Sewer Design Calculations - Urbex Engineering Ltd. Ultimate Storm Drainage Area Plan - Urbex Engineering Ltd.

MIDUSS POST DEVELOPMENT ANALYSIS: AREA A1 (UNCONTROLLED)

5	YEA	R DESIGN S	TORM							
"			MIDUSS Output							>"
"			MIDUSS version				Vei	rsion 2.	25 rev	. 473"
"			MIDUSS created					Febr	uary 7,	2010"
"		10	Units used:						ie M	ETRIC"
"			Job folder:			Z	:\Pro	ject Fil	es\PROJI	ECTS\"
"			1177	& 1187	West	5th Sti	reet\S	SWM\Post	-Develop	pment"
			Output filename:		A1-	POST DI	EV-5	YR UNCON	TROLLED	1.out"
			Licensee name:						Dan 1	Hodge"
			Company						Land	Smith"
	0.1		Date & Time last us	sed:			2022-	-04-29 a	t 2:42:	26 PM"
	31	T.	IME PARAMETERS"							
		100 000	Time Step"							
		1500.000	Max. Storim religiti							
	30	100.000	POPM Chicago storm"							
	52	1	Chicago storm"							
"		1049 500	Coefficient A"							
"		8.000	Constant B"							
"		0.873	Exponent C"							
"		0.500	Fraction R"							
"		180.000	Duration"							
"		1.000	Time step multiplie	er"						
"		Ma	aximum intensity		84.1	65 mr	n/hr"			
"		Τc	otal depth		32.5	66 mr	n"			
"		6	005hyd Hydrograph	n extens	ion 1	used in	this	file"		
"	33	CA	ATCHMENT 1"							
"		1	Triangular SCS"							
		1	Equal length"							
		1	SCS method"							
			SITE UNCONTROLLED"							
		/3./00	% Impervious"							
		40 000	Total Area"							
"		40.000	Overland Slope"							
"		0.300	Pervious Area"							
"		40.000	Pervious length"							
"		0.500	Pervious slope"							
"		0.378	Impervious Area"							
"		40.000	Impervious length"							
"		0.500	Impervious slope"							
"		0.250	Pervious Manning 'n	1 '''						
"		75.000	Pervious SCS Curve	No."						
"		0.164	Pervious Runoff coe	efficien	ıt"					
"		0.100	Pervious Ia/S coeff	icient"						
		8.467	Pervious Initial ab	stracti	.on"					
		0.015	Impervious Manning	'n'"						
		98.000	Impervious SCS Curv	ve No."	a					
		0.837	Impervious Runoll C	SOELLICI	ent"					
		0.100	Impervious Ia/S coe	abatraa	it" tion!					
"		0.510		abstrac	000	0 (100 c	m/800"		
		C	atchment 1	Pervio	119	Tmperv		.m/sec Potal Ar	"	
"		Si	irface Area	0.135	/40	0.378	().513	hect	are"
"		Τ	ime of concentration	42.358	3	4.362	e	5.845	minut	tes"
"		Тİ	ime to Centroid	164.84	1	104.300) 1	108.256	minu	tes"
"		Ra	ainfall depth	32.566	5	32.566		32.566	mm"	
"		Ra	ainfall volume	43.94		123.13	1	167.06	c.m"	
"		Ra	ainfall losses	27.228	3	5.317	1	11.080	mm"	
"		Rı	unoff depth	5.338		27.249	2	21.486	mm"	
"		Rı	unoff volume	7.20		103.02	1	110.22	c.m"	
"		Rı	noff coefficient	0.164		0.837	(0.660	"	
"		Ma	aximum flow	0.002		0.082	(0.082	c.m/s	sec"
"	40	HY	DROGRAPH Add Runoff	"						
		4	Add Runoff "	-	0.000	<u> </u>				
			U.U82 0.08	32 0	.000	0.0	100"			

LandSmith

25 YEAR DESIGN STORM " MIDUSS Output --

"		MIDUSS Output						>"
"		MIDUSS version				Ve	ersion 2.2	5 rev. 473"
"		MIDUSS created					Febru	ary 7, 2010"
"	10	Units used:						ie METRIC"
		Job folder:				Z:\Pro	ject File	s\PROJECTS\"
		11	·/·/ &	1187 West	5th S	Street	SWM\Post-	Development"
		Output filename:		Al- H	POST I	DEV-25	YR UNCON'I	ROLLEDI.out"
		Licensee name:						Jan Houge"
		Date & Time last	11800			2023	-05-02 at	Q.12.35 AM"
"	۲1 TT	IME PARAMETERS"	usec			2022	. 05 02 at	J.12.35 AM
"	5 000	Time Step"						
"	180.000	Max. Storm lengt	h"					
"	1500.000	Max. Hydrograph"						
"	32 ST	FORM Chicago storm	"					
"	1	Chicago storm"						
"	1343.700	Coefficient A"						
"	9.000	Constant B"						
"	0.814	Exponent C"						
"	0.500	Fraction R"						
"	180.000	Duration"						
"	1.000	Time step multip	lier"				-	
	Ma	aximum intensity		122.29	92	mm/hr'		
	To	otal depth	,	. 56.54	14	mm"	c.'	
	22 07	025hyd Hydrogr	aph e	extension u	ised i	in this	s file"	
	33 CF	TCHMENT I"						
"	1	Equal length"						
"	1	SCS method"						
"	1	SITE UNCONTROLLE	D"					
"	73.700	% Impervious"						
"	0.513	Total Area"						
"	40.000	Flow length"						
"	0.500	Overland Slope"						
"	0.135	Pervious Area"						
"	40.000	Pervious length"						
	0.500	Pervious slope"						
	0.378	Impervious Area"	1. 11					
	40.000	Impervious lengt	.n" "					
	0.300	Derwiewe Merrine						
	75 000	Pervious SCS Cur	TTO NO	. "				
"	0.308	Pervious Runoff	coeff	'. Ticient"				
"	0.100	Pervious Ia/S co	effic	ient"				
"	8.467	Pervious Initial	abst	raction"				
"	0.015	Impervious Manni	ng 'n	· ' ''				
"	98.000	Impervious SCS C	urve	No."				
"	0.883	Impervious Runof	f coe	efficient"				
"	0.100	Impervious Ia/S	coeff	icient"				
"	0.518	Impervious Initi	al ab	straction"			,	
	0.1	0.127 0	.000	0.000	().000 c	c.m/sec"	
	Ca	atchment 1	E O	ervious	1mpei	vious	O 512	a " bootoro"
	51 Tri	inace Area	on 2	9.13J 98.725	3 71	5	6 480	minutes"
"	т. т.	ime to Centroid	1	45 924	102 3	, २०२	107 205	minutes"
"	Ra	ainfall depth	5	6.544	56.54	14	56.544	mm"
"	Rá	ainfall volume	7	6.29	213.	78	290.07	c.m"
"	Ra	ainfall losses	3	9.151	6.604	1	15.164	mm"
"	Rı	unoff depth	1	7.393	49.93	39	41.380	mm"
"	Ru	unoff volume	2	23.47	188.8	31	212.28	c.m"
"	Ri	unoff coefficient	0	.308	0.883	3	0.732	"
"	Má	aximum flow	0	.007	0.126	5	0.127	c.m/sec"
	40 HY	DROGRAPH Add Runc	ff "					
	4	Add Runoff "	107	0 000		000		
		U.12/ (· 1 Z /	0.000	(

LandSmith

100 YEAR DESIGN STORM

	м	TDUSS Output					>"
	M	IDUSS version			7	Version 2 25	rev 473"
	M	IDUSS created			,	Februar	$r_{V} 7 2010"$
	10 11	nits used.				reprud	io METRIC"
"	0 01 T.	oh folder:			Z•\P1	roject Files	PROJECTS\"
	0	117	7 & 11	37 West	5th Street	-\SWM\Post-De	evelopment"
"	0	utput filename:		A1- PC)ST DEV-10() YR UNCONTRO	OLLED1. out"
"	I.	icensee name:					Dan Hodge"
"	 C	ompany					LandSmith"
"	D D	ate & Time last	used:		202	22-05-02 at	9:14:04 AM"
"	31 TTME	PARAMETERS"			201		
"	5.000 T	ime Step"					
"	180.000 M	ax. Storm length	"				
"	1500.000 M	ax. Hvdrograph"					
"	32 STOR	M Chicago storm"					
"	1 C	hicago storm"					
"	2137.400 C	oefficient A"					
"	11.000 C	onstant B"					
"	0.836 E	xponent C"					
"	0.500 F	raction R"					
"	180.000 D	uration"					
"	1.000 T	ime step multipl	ier"				
"	Maxi	mum intensity		167.69	91 mm/hi	<u>~</u> "	
"	Tota	l depth		79.44	14 mm"		
"	6 1	00hyd Hydrogra	ph exte	ension u	used in the	is file"	
"	33 CATC	HMENT 1"					
"	1 T	riangular SCS"					
"	1 E	qual length"					
"	1 S	CS method"					
"	1 S	ITE UNCONTROLLED	, n				
"	73.700 %	Impervious"					
"	0.513 T	otal Area"					
"	40.000 F	low length"					
"	0.500 0	verland Slope"					
	0.135 P	ervious Area"					
	40.000 P	ervious length"					
	0.500 P	ervious slope"					
	U.3/8 I	mpervious Area"					
	40.000 1	mpervious length					
	0.500 1	mpervious siope	1				
	0.230 P	ervious Manning	· n· ··				
	/5.000 P	ervious SCS Curv	e NO."	on+"			
	0.407 P	ervious Runoii C	fficio.	Lenc			
	0.100 F	ervious Ia/S COe	abatra	ation"			
	0.407 F	moorvious Mannin	austra				
	98 000 T	mpervious Mannin mpervious SCS Cu	rve No				
"	0 913 T	mpervious Bunoff	coeff	icient"			
"	0.100 T	mpervious Ta/S c	oeffic	ient."			
"	0.518 I	mpervious Initia	l abst:	raction'	,		
"		0.180 0.	000	0.000	0.000	c.m/sec"	
"	Catc	hment 1	Per	vious	Impervious	s Total Area	
"	Surf	ace Area	0.13	35	0.378	0.513	hectare"
"	Time	of concentratic	n 22.	762	3.263	5.937	minutes"
"	Time	to Centroid	136	.227	100.794	105.654	minutes"
"	Rain	fall depth	79.4	444	79.444	79.444	mm"
"	Rain	fall volume	107	.19	300.36	407.55	c.m"
"	Rain	fall losses	47.	132	6.893	17.475	mm"
"	Runo	ff depth	32.3	313	72.552	61.969	mm"
"	Runo	ff volume	43.	50	274.30	317.90	c.m"
"	Runo	ff coefficient	0.40)7	0.913	0.780	"
"	Maxi	mum flow	0.0	16	0.176	0.180	c.m/sec"
"	40 HYDR	OGRAPH Add Runof	f "				
"	4 A	dd Runoff "					
"		0.180 0.	180	0.000	0.000'	•	

DESIGNED BY	C. Corsini
DATE	November 11, 2019
REVISED BY	H. Kandilas
DATE	April 2022

STORM SEWER DESIGN (5 YEAR DESIGN)

Sheldon's Gate Phase 1

SUBMISSION #2 - ULTIMATE DEVELOPMENT URBEX FILE No. : D0171-P01-17 CITY OF HAMILTON FILE No. : 25T-201305

PIPE	ROUGHNES	iS (n)	DESIGN STORM PARAMETERS
< 600	=	0.013	i5-1049 5//td+8\^0 803
≥ 600	=	0.013	15 - 1049.5/(10+6) 0.805
DES	IGN VELOCI	TIES	DESIGN STORM PARAMETERS
MIN =	0.90	m/s	
MAX =	3.65	m/s	Q-0.0028(15)(AC)
MIN	IIMUM PIPE S	SIZE	MAXIMUM PIPE CAPACITY
	300	mm	85%
TIME O	F CONCENT	RATION	STORM YEAR EVENT
	10	minutes	5

		MANI		TIME IN MINUTES STORM WATER STUDY					PROPOSED SEWER DESIGN											
AREA	STREET NAME	MANT	IOLE	ELAPSED	FLOW IN	ELAPSED	AREA	с	CUMULATIVE	AXC	CUMULATIVE	i	Q	LENGTH		TYPE	GRADE	(m ³ /s)	VELOCITY (m/s)	PERCENT FULL (%)
		FROM	то	UPPER END	SECTION	LOWER END	(ha)	Ŭ	AREA	AXO	AXC	(mm/hr)	(m³/s)	(m)	DIAMETER		(%)	(. ,	. ,
PATHWAY 1																				
C-68F(a)	WEST 5th STREET	FUT MH#113	FUT MH#112	10.00	0.53	10.53	0.255	0.65	0.255	0.166	0.166	103.038	0.048	30.5	300	SMOOTH PVC	0.50	0.068	0.966	70.3%
C-68F(b)	WEST 5th STREET	FUT MH#112	FUT MH#111	10.53	1.21	11.74	0.802	0.65	1.057	0.521	0.687	100.681	0.194	103.2	525	REIN. CONCRETE	0.50	0.317	1.420	61.1%
C-68F(c)	WEST 5th STREET	FUT MH#111	FUT MH#110	11.74	1.12	12.86	0.757	0.65	1.814	0.492	1.179	95.688	0.316	104.7	600	REIN. CONCRETE	0.50	0.453	1.552	69.7%
C-68F(d)	WEST 5th STREET	FUT MH#110	MH#109	12.86	0.34	13.20	0.220	0.65	2.034	0.143	1.322	91.524	0.339	31.6	600	REIN. CONCRETE	0.50	0.453	1.552	74.8%
C-68F(e)	WEST 5th STREET	MH#109	MH#108	13.20	0.06	13.26	0.036	0.65	2.070	0.023	1.346	90.346	0.340	11.0	600	REIN. CONCRETE	2.00	0.906	3.104	37.6%
C-68F(g)	WEST 5th STREET	FUT MH#115	MH#114	10.00	0.41	10.41	0.172	0.65	0.172	0.112	0.112	103.038	0.032	23.5	300	SMOOTH PVC	0.50	0.068	0.966	47.4%
C-68F(i)	MUN No.1177-1183	FUT	MH#114	10.00	0.45	10.45	0.268	0.65	0.268	0.174	0.174	103.038	0.050	30.0	375	SMOOTH PVC	0.50	0.117	1.105	43.1%
C-68F(i)	MUN No.1177-1183 - 100YR	FUT	MH#114	10.00	0.45	10.45	0.268	0.65	0.268	0.174	0.174	181.813	0.089	30.0	375	SMOOTH PVC	0.50	0.117	1.105	76.1%
													0.038	*Additional	Flow Captu	ured (100 YR)				
C-68F(h)	MUN No.1187	FUT	MH#114	10.00	0.45	10.45	0.257	0.75	0.257	0.193	0.193	103.038	0.056	30.0	375	SMOOTH PVC	0.50	0.117	1.105	47.7%
C-68F(h)	MUN No.1187 - 100YR	FUT	MH#114	10.00	0.45	10.45	0.257	0.75	0.257	0.193	0.193	181.813	0.098	30.0	375	SMOOTH PVC	0.50	0.117	1.105	84.2%
													0.043	*Additional	Flow Captu	ured (100 YR)				
C-68F(f)	WEST 5th STREET	MH#114	MH#108	10.45	0.78	11.23	0.227	0.65	0.924	0.148	0.626	101.005	0.258	66.6	525	REIN. CONCRETE	0.50	0.317	1.420	81.3%
STM106	STREET A	MH#108	MH#107	13.26	0.62	13.88	0.499	0.65	3.493	0.324	2.296	90.144	0.660	71.3	825	REIN. CONCRETE	0.50	1.059	1.919	62.4%
STM106	STREET A	MH#107	MH#105	13.88	0.14	14.02	0.000	0.00	3.493	0.000	2.296	88.090	0.647	15.7	825	REIN. CONCRETE	0.50	1.059	1.919	61.1%
C-92F(b)	FUT STREET B	FUT MH#118	MH#106	10.00	0.88	10.88	1.964	0.65	1.964	1.277	1.277	103.038	0.368	130.0	525	REIN. CONCRETE	1.50	0.549	2.459	67.0%
STM105	FUT STREET B	MH#106	MH#105	10.88	0.31	11.19	0.278	0.65	2.242	0.181	1.457	99.159	0.405	45.5	525	REIN. CONCRETE	1.50	0.549	2.459	73.6%
STM104	STREET B	MH#105	MH#104	14.02	0.42	14.44	0.226	0.65	5.961	0.147	3.900	87.652	1.038	51.2	900	REIN. CONCRETE	0.50	1.335	2.034	77.7%
STM104	STREET B	MH#104	MH#101	14.44	0.10	14.54	0.000	0.00	5.961	0.000	3.900	86.333	1.024	12.1	900	REIN. CONCRETE	0.50	1.335	2.034	76.7%
EXT STM100	FUT STREET B	FUT MH#117	MH#103	10.00	1.46	11.46	0.913	0.65	0.913	0.593	0.593	103.038	0.171	112.6	450	REIN. CONCRETE	0.50	0.210	1.281	81.4%
STM103	STREET B	MH#103	MH#102	11.46	0.23	11.70	0.271	0.65	1.184	0.176	0.770	96.764	0.209	20.0	525	REIN. CONCRETE	0.50	0.317	1.420	65.7%
STM103	STREET B	MH#102	MH#101	11.70	0.14	11.84	0.000	0.00	1.184	0.000	0.770	95.837	0.207	12.0	525	REIN. CONCRETE	0.50	0.317	1.420	65.1%
STM102	STREET C	MH#101	MH#100	14.54	0.27	14.80	0.129	0.65	7.274	0.084	4.754	86.028	1.226	27.8	1050	REIN. CONCRETE	0.30	1.560	1.746	78.6%
STM101	STREET C	MH#100	MH#P2	14.80	0.14	14.94	0.072	0.65	7.346	0.047	4.801	85.222	1.226	15.1	1050	REIN. CONCRETE	0.30	1.560	1.746	78.6%

PROFESSIONAL BOULT C. J. RIDD

100550142

CE OF ON

DESIGNED BY	C. Corsini
DATE	November 11, 2019
REVISED BY	H. Kandilas
DATE	April 2022

STORM SEWER DESIGN (5 YEAR DESIGN)

Sheldon's Gate Phase 1

SUBMISSION #2 - ULTIMATE DEVELOPMENT URBEX FILE No. : D0171-P01-17 CITY OF HAMILTON FILE No. : 25T-201305

PIPE	ROUGHNES	S (n)	DESIGN STORM PARAMETERS
< 600	=	0.013	i5-1049 5//td+9\40 903
≥ 600	=	0.013	15 - 1049.5/(10+6) 0.805
DES	IGN VELOCI	TIES	DESIGN STORM PARAMETERS
MIN =	0.90	m/s	
MAX =	3.65	m/s	Q=0.0026(15)(AC)
MIN	IMUM PIPE S	SIZE	MAXIMUM PIPE CAPACITY
	300	mm	85%
TIME O	F CONCENT	RATION	STORM YEAR EVENT
	10	minutes	5

		MANHOLE		TIME IN MINUTES		STORM WATER STUDY						PROPOSED SEWER DESIGN								
AREA	STREET NAME	WANT	HOLE	ELAPSED	FLOW IN	ELAPSED	AREA	с	CUMULATIVE	AXC	CUMULATIVE	i	Q	LENGTH		TYPE	GRADE	(m ³ /s)	VELOCITY (m/s)	PERCENT FULL (%)
		FROM	то	UPPER END	SECTION	LOWER END	(ha)	•	AREA	AXO	AXC	(mm/hr)	(m³/s)	(m)	DIAMETER		(%)	(. ,
PATHWAY 2																				
C-53F(a)	KONSTANTINE COURT	HG21B007	HG21B003	10.00	0.92	10.92	0.582	0.65	0.582	0.378	0.378	103.038	0.109	90.0	375	SMOOTH PVC	1.09	0.172	1.632	63.4%
C-53F(b)	ALEXSIA COURT	HG21B001	HG21B003	10.00	0.52	10.52	0.572	0.65	0.572	0.372	0.372	103.038	0.107	41.8	375	SMOOTH PVC	0.74	0.142	1.345	75.6%
STM204	FUT STREET B	HG21B003	FUT MH#203	10.92	0.39	11.31	0.220	0.65	1.374	0.143	0.893	98.999	0.248	63.5	450	REIN. CONCRETE	2.27	0.448	2.730	55.2%
C-92F(a)	FUT DEVELOPMENT	UPSTREAM	FUT MH#203	10.00	0.26	10.26	0.748	0.65	0.748	0.486	0.486	103.038	0.140	20.0	450	REIN. CONCRETE	0.50	0.210	1.281	66.7%
STM203	FUT STREET E	FUT MH#203	FUT MH#202	11.31	0.73	12.03	0.807	0.65	2.929	0.525	1.904	97.399	0.519	107.0	600	REIN. CONCRETE	1.25	0.716	2.454	72.5%
STM202	FUI SIREELE	FUT MH#202	MH#201	12.03	0.62	12.65	1.038	0.65	3.967	0.675	2.579	94.552	0.683	115.4	600	REIN. CONCRETE	2.00	0.906	3.104	75.4%
STM207			FUT MU#207	10.00	0.96	10.96	0.666	0.64	0.666	0.426	0.426	102 020	0 100	90 E	275	CMOOTU DV/C	1.00	0.165	1 562	74 69/
51101307	FUISIREELD	FUT MH#306	FUT MIH#307	10.00	0.00	10.60	0.000	0.04	0.000	0.420	0.420	103.036	0.123	60.5	375	SMOOTH PVC	1.00	0.105	1.505	74.0%
STM308				10.00	0.75	10.75	0.401	0.61	0.401	0.200	0.200	102 029	0.096	70.0	275		1.00	0.165	1 562	52 4%
51101306	FUISIREELF	FUT MH#309		10.00	0.75	10.75	0.491	0.01	0.491	0.300	0.300	103.036	0.000	70.0	375	SMOOTHFVC	1.00	0.165	1.505	52.4%
STM306	FUT STREET D	FUT MH#307	FUT MH#306	10.86	0.63	11.49	0 201	0.65	1 448	0 189	0.915	99 255	0 254	84.1	450	REIN CONCRETE	1 50	0.364	2 210	69.8%
0110000	TOTOTICETD			10.00	0.00	11.45	0.201	0.00	1.440	0.100	0.010	33.200	0.204	04.1	400		1.00	0.004	2.215	00.070
STM310+311	FUT STREET C	FUT MH#311	FUT MH#310	10.00	0.32	10.32	0.383	0.65	0.383	0 249	0 249	103 038	0.072	32.0	300	SMOOTH PVC	1 50	0 118	1 673	61.0%
STM309	FUT STREET C	FUT MH#310	FUT MH#306	10.32	0.34	10.65	0.396	0.58	0.779	0.230	0.479	101.596	0.136	38.5	375	SMOOTH PVC	1.50	0.202	1.914	67.4%
STM305	FUT STREET C	FUT MH#306	FUT MH#305	11.49	0.27	11.76	0.182	0.65	2.409	0.118	1.512	96.664	0.409	36.2	600	REIN. CONCRETE	1.00	0.641	2.195	63.9%
STM304	FUT STREET C	FUT MH#305	FUT MH#304	11.76	0.46	12.23	0.491	0.65	2.900	0.319	1.831	95.583	0.490	61.0	600	REIN. CONCRETE	1.00	0.641	2.195	76.5%
STM303	FUT STREET C	FUT MH#304	FUT MH#303	12.23	0.09	12.32	0.201	0.65	3.101	0.131	1.962	93.821	0.515	12.9	675	REIN. CONCRETE	1.00	0.876	2.374	58.8%
STM302	FUT STREET C	FUT MH#303	FUT MH#302	12.32	0.54	12.86	0.486	0.65	3.587	0.316	2.278	93.485	0.596	77.4	675	REIN. CONCRETE	1.00	0.876	2.374	68.0%
STM301	FUT STREET C	FUT MH#302	FUT MH#301	12.86	0.49	13.36	0.467	0.65	4.054	0.304	2.581	91.524	0.661	70.2	675	REIN. CONCRETE	1.00	0.876	2.374	75.5%
STM300	FUT STREET C	FUT MH#301	FUT MH#300	13.36	0.11	13.47	0.196	0.65	4.250	0.127	2.708	89.824	0.681	15.0	750	REIN. CONCRETE	0.75	1.006	2.206	67.7%
STM201	FUT STREET C	FUT MH#300	FUT MH#201	13.47	0.49	13.95	0.385	0.65	4.635	0.250	2.959	89.443	0.741	64.3	750	REIN. CONCRETE	0.75	1.006	2.206	73.7%
STM200	STREET C	MH#201	MH#200	13.95	0.29	14.24	0.109	0.65	8.711	0.071	5.608	87.850	1.379	26.7	1200	REIN. CONCRETE	0.20	1.819	1.558	75.8%
STM101	STREET C	MH#200	MH#P2	14.24	0.16	14.40	0.072	0.65	8.783	0.047	5.655	86.943	1.377	15.0	1200	REIN. CONCRETE	0.20	1.819	1.558	75.7%
STM100	EASEMENT	MH#P2	MH#P1	14.94	0.21	15.16	0.097	0.65	16.226	0.063	10.519	84.792	2.578	30.5	1350	REIN. CONCRETE	0.40	3.522	2.383	73.2%
L	SWM POND	MH#P1	POND	15.16	0.23	15.39	0.000	0.00	16.226	0.000	10.519	84.165	2.560	32.8	1350	REIN. CONCRETE	0.40	3.522	2.383	72.7%

PROFESSIONAL BOULT C. J. RIDD

100550142

NCE OF ON

Site Servicing and Sediment and Erosion Control Plan

Grading Plan

1. CONSTRUCTION OF PPRIVATE STORM SEWERS SHALL BE IN ACCORDANCE WITH CITY STANDARDS AND SPECIFICATIONS (LATEST EDITION) AND THE MINISTRY OF THE

- 2.STORM SEWERS (200MM TO 450MM) SHALL BE PVC PIPE, CSA B182.2, SDR-35 3. COVER AND BEDDING MATERIAL FOR PVC PIPE SHALL BE GRANULAR 'A' AS PER OPSD
- 4.PVC PIPE SHALL REQUIRE SPECIAL PROCEDURES AS PER CITY SPECIFICATIONS. 5.ALL SEWERS SHALL BE FLUSHED PRIOR TO VIDEO INSPECTION. 6.MANHOLE FRAMES AND COVERS SHALL BE AS PER OPSD 401.010 (OPEN)
- 7.PVC SEWERS ARE TO BE TESTED FOR DEFLECTION (MANDREL PASSAGE) AFTER INSTALLATION. PRIOR TO ACCEPTANCE BY THE CITY PIPE DEFLECTION TESTING SHALL BE
- 8. ALTERNATE MATERIALS MAY BE ACCEPTABLE PROVIDED APPROVAL HAS FIRST BEEN OBTAINED FROM THE CITY/ENGINEER.

- 1. CONSTRUCTION OF PRIVATE DRAINS SHALL BE IN ACCORDANCE WITH CITY STANDARDS AND SPECIFICATIONS (LATEST EDITION) AND THE MINISTRY OF THE ENVIRONMENT GUIDELINES
- 2.TO BE LOCATED AS INDICATED ON THE FACE OF THE PLAN. 3.200MM SANITARY PRIVATE DRAINS SHALL BE PVC PIPE CSA B182.1 M-1983, SDR-28 AS PER FORM 50 (ANY COLOR OTHER THAN WHITE). WOOD MARKING AT THE END OF THE
- SANITARY PRIVATE DRAIN SHALL BE PAINTED RED. 4.COVER AND BEDDING MATERIAL FOR PRIVATE DRAINS SHALL BE GRANULAR 'A' INSTALLED AS PER OPSD 802.010 OR 802.013.
- 5.MINIMUM FALL FOR PRIVATE DRAINS SHALL BE 2.0% SLOPE. 6.TOP OF PRIVATE DRAINS AT STREET LINE SHALL BE IN ACCORDANCE WITH THE INVERT ELEVATION INDICATED ON THE PLAN AT THE BUILDING FACE, LESS SLOPE TO STREET LINE
- 7. PRIVATE DRAIN CONNECTIONS TO THE MUNICIPAL SEWER SHALL BE AS PER CITY

- 1. CONSTRUCTION OF PRIVATE WATER SERVICES SHALL BE IN ACCORDANCE WITH CITY STANDARDS AND SPECIFICATIONS (LATEST EDITION) AND THE MINISTRY OF THE
- ENVIRONMENT GUIDELINES (LATEST EDITION). 2.WATER SERVICE CONNECTION SHALL BE AS PER CUT-IN TEE COMPLETE WITH ANCHOR BLOCK TO CITY OF HAMILTON STANDARD WM 204.01 - WITH CURB-STOP IMMEDIATELY
- 3.GRANULAR BEDDING AS PER WM-200.01 AND WM-200.02 TO BE GRANULAR 'D' AS PER
- 4. VALVE BOXES TO BE CONSTRUCTED AT PROPERTY LIMIT AS PER WM-202.

- 1.CONCRETE CURBS AND GUTTERS SHALL BE AS PER OPSD 600.110, CONCRETE MUST HAVE MIN 30 MPA 28-DAY STRENGTH.
- 2.CURB DEPRESSIONS AT DRIVEWAYS SHALL BE AS PER OPSD 600.110 AND OPSD 351.010. 3.1.5M CONCRETE SIDEWALK AS PET HAMILTON STANDARD DRAWING RD-103 (125MM THICKNESS, MIN. 30 MPA STRENGTH WITH GRANULAR 'A' BASE AS REQUIRED TO PROVIDE A LEVELLING COURSE FOR THE CONCRETE. AT DRIVEWAYS CONCRETE DEPTH TO BE
- 4.DRIVE AISLE SHALL CONSIST OF A MINIMUM OF 300MM GRANULAR 'B', 150MM GRANULAR 'A', 80MM HL8 & 40MM HL3. CONSTRUCTED ABOVE SUB-GRADE MATERIAL COMPACTED
- 5.PARKING AREAS SHALL CONSIST OF A MINIMUM OF 300MM GRANULAR 'A' AND 60MM HL3, CONSTRUCTED ABOVE SUB-GRADE MATERIAL COMPACTED TO 100% SPD. 6.ROAD RESTORATION WITHIN CUTS FOR SERVICE INSTALLATIONS SHALL BE AS PER RD-100.01. GRANULAR 'A' SHALL BE USED TO MATCH EXISTING DEPTH OF GRANULAR
- 7.ASPHALT RESTORATION WITHIN THE MUNICIPAL ROAD SHALL INCLUDE BASE COURSE OF 80MM SUPERPAVE 19.0 AND TOP COURSE OF 40MM SUPERPAVE 9.5 (TRAFFIC CATEGORY
- C), PG 58–28 ASPHALT CEMENT. 8.BOULEVARD AREAS DISTURBED BY CONSTRUCTION SHALL BE RESTORED WITH MIN. 100MM

- 1.ALL BEDDING AND BACKFILL MATERIAL, ROAD SUB-GRADES AND GENERALLY ALL MATERIAL USED FOR LOT GRADING, FILL SECTIONS ETC. SHALL BE COMPACTED TO MINIMUM 100% SPD UNLESS OTHERWISE RECOMMENDED BY A GEOTECHNICAL ENGINEER. 2.ALL MATERIALS SHALL BE PLACED IN LIFTS NOT EXCEEDING 300MM IN DEPTH.
- 3.ALL GRANULAR ROAD BASE MATERIALS SHALL BE COMPACTED TO 100% SPD.

E. <u>SILTATION AND EROSION CONTROL</u>

- 1.SILTATION CONTROL BARRIERS SHALL BE PLACED AS DETAILED ON THE PLAN ACCORDING TO DETAIL 'B' (THIS SHEET)
- 2.ALL SILTATION CONTROL MEASURES SHALL BE CLEANED AND MAINTAINED AFTER EACH RAINFALL EVENT TO THE SATISFACTION OF THE CITY OF HAMILTON. 3.CATCH BASIN SEDIMENT CONTROL DEVICES SHALL BE SILTSACK BY ACF ENVIRONMENTAL OR APPROVED EQUIVALENT, TO BE PLACED AS PER THE MANUFACTURER'S
- 4. ADDITIONAL SILTATION CONTROL MEASURES MAY BE REQUIRED AS PER FIELD CONDITIONS

LEGEND

◯ SAN	EXISTING SANITARY MAINTENANCE HOLE
SAN	PROPOSED SANITARY MAINTENANCE HOLE
I PLUG	EXISTING PLUG
] PLUG	PROPOSED PLUG
○ STM MH	EXISTING STORM MAINTENANCE HOLE
STM MH	PROPOSED STORM MAINTENANCE HOLE
СВ	EXISTING CATCH BASIN
СВ	PROPOSED CATCH BASIN/AREA DRAIN
DCB	EXISTING DOUBLE CATCH BASIN
DCB	PROPOSED DOUBLE CATCH BASIN
DICB	EXISTING DITCH INLET CATCH BASIN
DICB	PROPSED DITCH INLET CATCH BASIN
Свмн	EXISTING CATCH BASIN MAINTENANCE HOLE
🔳 СВМН	PROPOSED CATCH BASIN MAINTENANCE HOL
∐11.25° BEND	PROPOSED 11.25° WATERMAIN BEND
22.5° BEND	PROPOSED 22.5° WATERMAIN BEND
́45° BEND	PROPOSED 45° WATERMAIN BEND
_ ⊣ 90° BEND	PROPOSED 90° WATERMAIN BEND
	EXISTING WATERMAIN CROSS
	PROPOSED WATERMAIN CROSS
▷ REDUCER	EXISTING WATERMAIN REDUCER
► REDUCER	PROPOSED WATERMAIN REDUCER
Η _{τεε}	EXISTING WATERMAIN TEE
	PROPOSED WATERMAIN TEE
\otimes wv	EXISTING WATER VALVE
● wv	PROPOSED WATER VALVE
× _{100.50}	EXISTING ELEVATION
× (100.00)	PROPOSED ELEVATION
(100.00)	PROPOSED APRON ELEVATION
× <u>S(100.00)</u>	PROPOSED SWALE ELEVATION
	PROPOSED ENTRANCE LOCATION
Ŵ	PROPOSED WATER METER LOCATION
oo	PROPOSED SILT FENCE

TENDERE'R SHALL SATISFY THEMSELVES AS TO THE NATURE OF THE GROUND AND BID ACCORDINGLY. ALL ROCK LINE INDICATIONS SHOWN ON THE PLAN MUST BE VERIFIED BY THE CONTRACTOR.

<u>GENERAL NOTES:</u>

CONTRACTOR SHALL VERIFY LOCATIONS AND INVERTS OF ALL EXISTING SANITARY AND STORM SEWERS AND WATERMAINS. PRIVATE DRAINS AND WATER SERVICES, GAS MAINS, CABLE TV, HYDRO AND TELEPHONE DUCTS ETC AT START OF CONSTRUCTION.

LandSmith

CLIENT

MUNICIPALITY:

DWG No:

2021VP38

SEAL

VALVASORI PROPERTIES

CITY OF HAMILTON

PROJECT NAME: 1177-1187 WEST 5TH STREET TITLE: SITE SERVICING AND SEDIMENT AND **EROSION CONTROL PLAN** SCALE: DATE: 1:200 2022-05-05 CHECKED BY: DESIGNED BY: AS ΔS

SHEET No:

S1

STANDARD NOTES

1. CONSTRUCTION OF PPRIVATE STORM SEWERS SHALL BE IN ACCORDANCE WITH CITY STANDARDS AND SPECIFICATIONS (LATEST EDITION) AND THE MINISTRY OF THE ENVIRONMENT GUIDELINES (LATEST EDITION).

2.STORM SEWERS (200MM TO 450MM) SHALL BE PVC PIPE, CSA B182.2, SDR-35

3.COVER AND BEDDING MATERIAL FOR PVC PIPE SHALL BE GRANULAR 'A' AS PER OPSD 802.010 OR 802.013. 4.PVC PIPE SHALL REQUIRE SPECIAL PROCEDURES AS PER CITY SPECIFICATIONS.

5. ALL SEWERS SHALL BE FLUSHED PRIOR TO VIDEO INSPECTION. 6.MANHOLE FRAMES AND COVERS SHALL BE AS PER OPSD 401.010 (OPEN)

7.PVC SEWERS ARE TO BE TESTED FOR DEFLECTION (MANDREL PASSAGE) AFTER INSTALLATION. PRIOR TO ACCEPTANCE BY THE CITY PIPE DEFLECTION TESTING SHALL BE REPEATED.

8. ALTERNATE MATERIALS MAY BE ACCEPTABLE PROVIDED APPROVAL HAS FIRST BEEN OBTAINED FROM THE CITY/ENGINEER.

C. <u>PRIVATE DRAINS</u>

1. CONSTRUCTION OF PRIVATE DRAINS SHALL BE IN ACCORDANCE WITH CITY STANDARDS AND SPECIFICATIONS (LATEST EDITION) AND THE MINISTRY OF THE ENVIRONMENT GUIDELINES (LATEST EDITION).

2.TO BE LOCATED AS INDICATED ON THE FACE OF THE PLAN. 3.200MM SANITARY PRIVATE DRAINS SHALL BE PVC PIPE CSA B182.1 M-1983, SDR-28 AS PER FORM 50 (ANY COLOR OTHER THAN WHITE). WOOD MARKING AT THE END OF THE SANITARY PRIVATE DRAIN SHALL BE PAINTED RED. 4.COVER AND BEDDING MATERIAL FOR PRIVATE DRAINS SHALL BE GRANULAR 'A'

INSTALLED AS PER OPSD 802.010 OR 802.013. 5.MINIMUM FALL FOR PRIVATE DRAINS SHALL BE 2.0% SLOPE.

6.TOP OF PRIVATE DRAINS AT STREET LINE SHALL BE IN ACCORDANCE WITH THE INVERT ELEVATION INDICATED ON THE PLAN AT THE BUILDING FACE, LESS SLOPE TO STREET LINE AT 2%.

7. PRIVATE DRAIN CONNECTIONS TO THE MUNICIPAL SEWER SHALL BE AS PER CITY STANDARD DRAWING SEW-300.

B. <u>WATER SERVICES</u>

1. CONSTRUCTION OF PRIVATE WATER SERVICES SHALL BE IN ACCORDANCE WITH CITY STANDARDS AND SPECIFICATIONS (LATEST EDITION) AND THE MINISTRY OF THE ENVIRONMENT GUIDELINES (LATEST EDITION).

2.WATER SERVICE CONNECTION SHALL BE AS PER CUT-IN TEE COMPLETE WITH ANCHOR BLOCK TO CITY OF HAMILTON STANDARD WM 204.01 - WITH CURB-STOP IMMEDIATELY ADJACENT TO THE STREET LINE.

3.GRANULAR BEDDING AS PER WM-200.01 AND WM-200.02 TO BE GRANULAR 'D' AS PER FORM 600. 4. VALVE BOXES TO BE CONSTRUCTED AT PROPERTY LIMIT AS PER WM-202.

C. <u>SURFACE WORKS</u>

1.CONCRETE CURBS AND GUTTERS SHALL BE AS PER OPSD 600.110, CONCRETE MUST HAVE MIN 30 MPA 28-DAY STRENGTH. 2.CURB DEPRESSIONS AT DRIVEWAYS SHALL BE AS PER OPSD 600.110 AND

OPSD 351.010. 3.1.5M CONCRETE SIDEWALK AS PET HAMILTON STANDARD DRAWING RD-103 (125MM THICKNESS, MIN. 30 MPA STRENGTH WITH GRANULAR 'A' BASE AS REQUIRED TO PROVIDE A LEVELLING COURSE FOR THE CONCRETE. AT

DRIVEWAYS CONCRETE DEPTH TO BE 175MM. 4.DRIVE AISLE SHALL CONSIST OF A MINIMUM OF 300MM GRANULAR 'B', 150MM GRANULAR 'A', 80MM HL8 & 40MM HL3. CONSTRUCTED ABOVE SUB-GRADE

MATERIAL COMPACTED TO 100% SPD. 5. PARKING AREAS SHALL CONSIST OF A MINIMUM OF 300MM GRANULAR 'A' AND 60MM HL3, CONSTRUCTED ABOVE SUB-GRADE MATERIAL COMPACTED TO 100%

6.ROAD RESTORATION WITHIN CUTS FOR SERVICE INSTALLATIONS SHALL BE AS PER RD-100.01. GRANULAR 'A' SHALL BE USED TO MATCH EXISTING DEPTH

OF GRANULAR WITHIN ROADWAY. 7.ASPHALT RESTORATION WITHIN THE MUNICIPAL ROAD SHALL INCLUDE BASE

COURSE OF 80MM SUPERPAVE 19.0 AND TOP COURSE OF 40MM SUPERPAVE 9.5 (TRAFFIC CATEGORY C), PG 58–28 ASPHALT CEMENT. 8.BOULEVARD AREAS DISTURBED BY CONSTRUCTION SHALL BE RESTORED WITH

D. <u>COMPACTION REQUIREMENTS</u>

1. ALL BEDDING AND BACKFILL MATERIAL, ROAD SUB-GRADES AND GENERALLY ALL MATERIAL USED FOR LOT GRADING, FILL SECTIONS ETC. SHALL BE COMPACTED TO MINIMUM 100% SPD UNLESS OTHERWISE RECOMMENDED BY A

GEOTECHNICAL ENGINEER. 2.ALL MATERIALS SHALL BE PLACED IN LIFTS NOT EXCEEDING 300MM IN DEPTH. 3.ALL GRANULAR ROAD BASE MATERIALS SHALL BE COMPACTED TO 100% SPD.

E. <u>SILTATION AND EROSION CONTROL</u>

1. SILTATION CONTROL BARRIERS SHALL BE PLACED AS DETAILED ON THE PLAN ACCORDING TO DETAIL 'B' (THIS SHEET) 2.ALL SILTATION CONTROL MEASURES SHALL BE CLEANED AND MAINTAINED AFTER

EACH RAINFALL EVENT TO THE SATISFACTION OF THE CITY OF HAMILTON. 3.CATCH BASIN SEDIMENT CONTROL DEVICES SHALL BE SILTSACK BY ACF

ENVIRONMENTAL OR APPROVED EQUIVALENT, TO BE PLACED AS PER THE MANUFACTURER'S RECOMMENDATIONS (IF APPLICABLE).

4. ADDITIONAL SILTATION CONTROL MEASURES MAY BE REQUIRED AS PER FIELD CONDITIONS AS DETERMINED BY THE CITY.

TENDERE'R SHALL SATISFY THEMSELVES AS TO THE NATURE OF THE GROUND AND BID ACCORDINGLY. ALL ROCK LINE INDICATIONS SHOWN ON THE PLAN MUST BE VERIFIED BY THE CONTRACTOR.

CONTRACTOR SHALL VERIFY LOCATIONS AND INVERTS OF ALL EXISTING SANITARY AND STORM SEWERS AND WATERMAINS. PRIVATE DRAINS AND WATER SERVICES, GAS MAINS, CABLE TV, HYDRO AND TELEPHONE DUCTS ETC AT START OF CONSTRUCTION.

2022-05-05 ISSUED FOR ZONING SUBMISSION 2022-04-05 ISSUED FOR INTERNAL REVIEW NO: DATE: DESCRIPTION: REVISIONS

GENERAL NOTES:

SEAL

LandSmith Engineering & Consulting Ltd. Suite 332, 3—35 Stone Church Rd. LandSmith Ancaster, ON L9K 1S4 andrew@landsmithec.com 289-775-9374 GINEERING & CONSULTING LTD.

CLIENT

VALVASORI PROPERTIES

CITY OF HAMILTON

PROJECT NAME:

MUNICIPALITY:

1177-1187 WEST 5TH STREET

SITE GRAL	DING PLAN
SCALE: 1:200	DATE: 2022-05-05
CHECKED BY: AS	DESIGNED BY: AS
DWG No: 2021VP38	SHEET NO: G1

× _{100.50}	EXISTING ELEVATION
× _{±100.50}	EXISTING ELEVATION (CALCULATED)
× (100.00)	PROPOSED ELEVATION
<u>(100.00)</u>	PROPOSED APRON ELEVATION
imes s(100.00)	PROPOSED SWALE ELEVATION
\bigcirc	PROPOSED DOWNSPOUT
	PROPOSED SWALE
oo	PROPOSED SILT FENCE
	PROPOSED ENTRANCE LOCATION
	OVERLAND FLOW ROUTE
СВ	EXISTING CATCH BASIN
СВ	PROPOSED CATCH BASIN
DCB	EXISTING DOUBLE CATCH BASIN
DCB	PROPOSED DOUBLE CATCH BASIN
БОСВ	EXISTING DITCH INLET CATCH BASIN
DICB	PROPSED DITCH INLET CATCH BASIN

EXISTING WATER VALVE PROPOSED WATER VALVE

 \otimes wv

• WV

LEGEND

APPENDIX 'E'

City of Hamilton Existing Infrastructure Drawings

.