

559 Garner Road East, Ancaster, Ontario

L9G 3K9 Hydrogeological Investigation

Client:

Elite M.D. Developments 102-3410 S. Service Road, Burlington, ON L7N 3T2,

Attention: Enayatullah Safi

Type of Document: Preliminary

Project Name: 559 Garner Road East, Ancaster, Ontario

Project Number:

HAM-00802098-B0

EXP Services Inc. 1595 Clark Boulevard Brampton, ON, L6T 4V1 t: 905.793.9800 f: 905.793.0641

Date Submitted: 2022-10-06

1

Table of Contents

1	Introd	luction	
	1.1	Project Description	3
	1.2	Project Objectives	3
	1.3	Scope of Work	3
	1.4	Review of Previous Reports	4
2	Hydro	geological Setting	
	2.1	Regional Setting	5
	2.1.1	Regional Physiography	5
	2.1.2	Regional Geology and Hydrogeology	5
	2.1.3	Existing Water Well Survey	5
	2.2	Site Setting	6
	2.2.1	Site Topography	6
	2.2.2	Local Surface Water Features	6
	2.2.3	Local Geology and Hydrogeology	6
3	Result	ts	
	3.1	Monitoring Well Details	8
	3.2	Water Level Monitoring	8
	3.3	Hydraulic Conductivity Testing	9
	3.4	Groundwater Quality	9
4	Dewa	tering Assessment 11	
	4.1	Dewatering Flow Rate Estimate and Zone of Influence	12
	4.2	Cooper-Jacob's Radius of Influence	12
	4.3	Stormwater	13
	4.4	Results of Dewatering Rate Estimates	13
	4.4.1	Construction Dewatering Rate Estimate	13
	4.4.2	Post-Construction Dewatering Rate Estimate	14
	4.5	MECP Water Taking Permits	14
5	Enviro	onmental Impact	

EXP Services Inc.	2
559 Garner Road East, Ancaster, Ontario	
Hydrogeological Investigation	
HAM-00802098-B0	
October 6, 2022	

5.1	Surface Water Features	. 16					
5.2	Groundwater Sources	. 16					
5.3	Geotechnical Considerations	. 16					
5.4	Groundwater Quality	. 16					
5.5	Well Decommissioning	. 17					
Conclusions and Recommendations18							
Limita	itations						
Refere	References						
	 5.1 5.2 5.3 5.4 5.5 Conclu Limita Refere 	 5.1 Surface Water Features 5.2 Groundwater Sources 5.3 Geotechnical Considerations 5.4 Groundwater Quality 5.5 Well Decommissioning Conclusions and Recommendations 18 Limitations 20 References 21 					

List of Figures

- Figure 1 Site Location Plan
- Figure 2 Surficial Geology
- Figure 3 MECP Water Well Records Map
- Figure 4 Borehole/Monitoring Well Location Plan
- Figure 5 Cross Section A-A
- Figure 6 Groundwater Flow Map

List of Appendices

Figures

- Appendix A MECP WWR Summary Table
- Appendix B Borehole Logs
- Appendix C SWRT Procedures and Results
- Appendix D Laboratory's Certificates of Analysis
- Appendix E Construction and Post-Construction Flow Rate Calculations

1 Introduction

1.1 Project Description

EXP Services Inc. (EXP) was retained by Elite M.D. Developments to prepare a Hydrogeological Investigation Report associated with the proposed development located at 559 Garner Road East, Ancaster, Ontario (hereinafter referred to as the 'Site').

The Site is currently vacant. It is our understanding that the proposed development plan is to construct a seven (7) storey mixed-use (residential and commercial) building with two (2) levels of underground parking. It should be noted that a plan depicting the depth and lateral extent of the underground parking has not yet been provided – it will therefore be assumed that two (2) levels of underground parking will extend across the entire site. The Site location plan is shown on Figure 1.

EXP conducted a Geotechnical Investigation and Phase Two Environmental Site Assessment in conjunction with this investigation. The pertinent information gathered from the noted investigations is utilized for this report.

1.2 Project Objectives

The main objectives of the Hydrogeological Investigation are as follows:

- Establish the local hydrogeological settings within the Site;
- Provide recommendations on construction dewatering;
- Assess groundwater quality; and
- Prepare a Hydrogeological Investigation Report.

1.3 Scope of Work

To achieve the investigation objectives, EXP has completed the following scope of work:

- Reviewed available geological and hydrogeological information for the Site;
- Drilled and installed one (1) monitoring well to an approximate depth of 10 meter below ground surface (mbgs);
- Installed 50 mm diameter monitoring wells in the geotechnical boreholes;
- Developed and conducted Single Well Response Tests (SWRT) on all new and existing monitoring wells to assess hydraulic conductivities of the saturated soils at the Site;
- Completed two (2) rounds of groundwater level measurements at all monitoring wells;
- Collected one (1) groundwater sample for analyses of parameters, as listed in the City of Hamilton Sanitary and Storm Sewer Use By-Law;
- Compare Phase Two ESA analytical results to Sewer Use By-Law parameters;
- Evaluated the information collected during the field investigation program, including borehole geological information, Water Well Records (WWR), SWRT results, groundwater level measurements and groundwater water quality;
- Prepared site plans, cross section, geological mapping and groundwater contour mapping for the Site;
- Estimated construction dewatering flow rates;

- Assessed potential impacts and recommended mitigation measures; and
- Prepared a Hydrogeological Investigation Report.

The Hydrogeological Investigation was prepared in accordance with the Ontario Water Resources Act and Ontario Regulation 387/04. The scope of work outlined above was made to assess dewatering and did not include a review of Environmental Site Assessments (ESA).

1.4 Review of Previous Reports

The following reports were reviewed as part of this Hydrogeological Investigation:

- EXP Services Inc. (June 30, 2021), Draft Geotechnical Investigation Report, 559 Garner Road East, ON, prepared for Elite M.D. Developments.
- EXP Services Inc. (December 21, 2020), Phase Two Environmental Site Assessment, 559 Garner Road East, ON, prepared for Garner South M.D. Developments.

2 Hydrogeological Setting

2.1 Regional Setting

2.1.1 Regional Physiography

The Site is within a physiographic region known as the Haldimand Clay Plain. The physiographic landform is named Till Moraines. The Site is located approximately 900 m south of Niagara Escarpment (Chapman & Putnam, 2007).

The Haldimand Clay Plain is located between Niagara Escarpment and Lake Erie, which occupies all the Niagara peninsular except the fruit belt below the escarpment. Till comes to the surface generally in the low morainic ridges in the north. The northern part of the Plain has more relief southern part.

The topography of the Iroquois Plain is relatively flat with a gradual slope to the south, toward Lake Erie.

2.1.2 Regional Geology and Hydrogeology

The surficial geology can be described as fine textured glaciolacustrine deposits consisting of silt and clay with minor sand and gravel, massive to well laminated (Ministry of Northern Development and Mines, 2012). The surficial geology of the Site and surrounding areas is shown on Figure 2. The Site is on a Till Moraine (Chapman & Putnam, 2007).

Based on the available regional geology maps, the bedrock present at the Site is mapped as sucrosic, fossiliferous, locally biohermal dolostone belonging to the Guelph Formation, Armstrong, and Dodge (2007). The area of carbonate rock units is identified as most susceptible to karst processes and is mapped as a potential karst area.

Regional groundwater across the area flows north, towards Lake Ontario. Local deviation from the regional groundwater flow pattern may occur in response to changes in topography and/or soils, as well as the presence of surface water features and/or existing subsurface infrastructure.

2.1.3 Existing Water Well Survey

Water Well Records (WWRs) were compiled from the database maintained by the Ministry of the Environment, Conservation and Parks (MECP) and reviewed to determine the number of water wells documented within a 500-m radius of the Site boundaries. The locations of the MECP WWRs within 500 m of the Site are shown on Figure 3. A summary of the WWR is included in Appendix A.

The MECP WWR database indicates that forty-nine (49) records within a 500 m radius from the Site centroid where eight (8) well record are identified onsite (Figure 3 and Appendix A). Well distances are calculated relative to the Site centroid, therefore some distances in Appendix A exceed 500 m.

The database indicates that the offsite wells are at an approximate distance of ninety-five (95) m or greater from the Site centroid. All offsite wells were reportedly identified as monitoring and observation wells, test holes, dewatering wells, water supply wells, abandoned and/or listed with unknown use.

There are twenty one (21) offsite water supply wells (16 domestic, 3 commercial, 1 industrial, and 1 irrigation/domestic). The Well Identification Number of the closest offsite water supply well is 6802208. It is reportedly 109 m from the Site boundary.

The reported water levels ranged from depths of 0.3 m to 46.3 meters below ground surface (mbgs).

*ехр.

Based on the locations the water supply well and since the area is partially municipally serviced, it is likely that some of the noted water supply wells are still active.

2.2 Site Setting

2.2.1 Site Topography

The Site is in a residential and commercial area. The topography is considered relatively flat with a regional gradual northwesterly slope. As indicated on the borehole logs included in Appendix B, the surface elevation of the Site ranges between approximately 247.17 to 249.01 meters above sea level (masl).

2.2.2 Local Surface Water Features

The Site is within the Spencer Creek watershed. No surface water features exist onsite. The nearest surface water feature is an unnamed tributary, located approximately 400 m north of the Site boundary. The nearest surface water feature is Lake Ontario, is approximately 9.4 km from the Site boundary to the northeast.

2.2.3 Local Geology and Hydrogeology

A summary of subsurface soil stratigraphy is provided in the following paragraphs. The soil descriptions are based on the geotechnical investigation report (EXP, 2018). They are summarized for the hydrogeological interpretations. As such, the information provided in this section shall not be used for construction design purposes.

The detailed soil profiles encountered in each borehole and the results of moisture content determinations are presented on the attached borehole logs (Appendix B). The soil boundaries indicated on the borehole logs are inferred from non-continuous sampling and observations during drilling. These boundaries are intended to reflect approximate transition zones for the Hydrogeological Investigation and shall not be interpreted as exact planes of geological change.

The "Notes on Sample Description" preceding the borehole logs form an integral part of and should be read in conjunction with this report. The following is a brief description of the soil conditions encountered during the investigation.

Based on the results of the geotechnical investigation, the general subsurface soil stratigraphy consists of the following units from top to bottom:

Topsoil

The boreholes were advanced throughout the vacant property and encountered a surficial layer of topsoil ranging in thickness from approximately 50 to 175 mm.

Fill

Fill was encountered below the topsoil in all boreholes, extending to 0.3 to 1.6 m depth. The fill typically consisted of clayey silt, grading to sandy silt or silt locally. Trace grave and rootlets were observed throughout. SPT N values of the fill ranged from 5 to 15 blows per 305 mm of penetration of the split spoon sampler.

Sandy Silt to Silty Sand

A very loose to compact sandy silt to silty sand layer, distinct from the underlying silty sand to silt deposit, was observed below the fill in all boreholes and extending to 2.3 to 4.6 m depth. The layer was typically very loose to compact with SPT N values ranging from 0 to 26, locally as high as 38 (dense) at the base of the layer in Borehole BH-2, where local clayey silt layers were noted.

*exp.

Silty Sand to Silt

The native soil was generally noted to become finer with depth and transitioned to silty sand or silt below depths of approximately 2.3 to 4.6 m, extending to the borehole termination depth. The silty sand to silt was brown to grey and generally in a very moist to wet state. The layer was typically dense to very dense with SPT N values ranging from 43 to 96 blows per 305 mm of penetration.

The borehole and monitoring well locations are shown on Figure 4. A geological cross-section was generated based on the available borehole logs completed as part of the previous and current investigations and shown on Figure 5 (Cross section A-A'). It is noted that the cross section shows a simplified representation of soil conditions and soil deposits may be interconnected differently than represented. Borehole logs used to generate both cross-sections are provided in Appendix B.

3 Results

3.1 Monitoring Well Details

The monitoring well network was installed as part of the Geotechnical and Environmental Investigations at the Site. It consists of the following:

- Three (3) shallow overburden monitoring wells (BH/MW2, BH/MW3, and BH/MW6) were installed in November 2020 during a previous investigation.
- One (1) deep overburden monitoring well (BH/MW101) was installed in June 2021 for this current investigation.

The diameter of all monitoring wells is 50 mm. All wells were installed with a stick-up protective casing. Borehole logs and monitoring well installation details are provided in Appendix B. The monitoring well locations are shown on Figure 4.

3.2 Water Level Monitoring

As part of the Hydrogeological Investigation, static water levels in the monitoring wells installed in the vacant lot were recorded in two (2) monitoring events, June 30, 2021, and July 14, 2021. A summary of all static water level data as it relates to the elevation survey is given in Table 3-1 below.

The groundwater elevation recorded in the intermediate wells ranged from 245.11 masl (4.78 mbgs at BH2 on July 14, 2021) to 245.35 masl (3.74 mbgs at BH/MW101 on July 14, 2021).

Monitoring Well ID	Ground Surface Elevation (masl)	Stick Up (+) / Stick Down (-) (m)	Stick Up (+) / Approximate Full Stick Down (- Well Depth -) (m) Measured (mbgs)		30-Jun-21	14-Jul-21					
				mbTOP	3.68	3.74 2.64 245.35 4.78 3.90					
BH/MW101	247.99	1.10	9.79	mbgs	2.58	2.64					
				masl	245.41	245.35					
				mbTOP	4.65	4.78 3.90 4 245.11					
BH/MW2	249.01	0.88	8.21	mbgs	3.77						
				masl	245.24	245.11					
		0.74		mbTOP	4.32	4.35					
BH/MW3	248.80		0.74	0.74	0.74	8.20	mbgs	3.58	3.61		
				masl	245.22	245.19					
			0.68	0.68	0.68				mbTOP	2.70	2.72
BH/MW6	/MW6 247.17					6.70	mbgs	2.02	2.04		
				masl	245.15	245.13					

Table 3-1: Summary of Measured Groundwater Elevations

One map was created for the Site to show groundwater contours of the water-bearing zones (Figure 6). Accordingly, the groundwater flow direction is interpreted to be southwest of the Site. For the design of foundations without perimeter and foundation drainage systems, shallower wells need to be considered to evaluate the shallow groundwater table. The hydrogeologist needs to be consulted during the design process.

[%]ехр.

Groundwater levels are expected to show seasonal fluctuations and vary in response to prevailing climate conditions. This may also affect the direction and rate of flow. It is recommended to conduct seasonal groundwater level measurements to provide more information on seasonal groundwater level fluctuations.

3.3 Hydraulic Conductivity Testing

Four (4) Single Well Response Tests (SWRTs) were completed on monitoring wells BH/MW101, BH2, BH/MW3, and BH6 on July 14, 2021. The tests were completed to estimate the saturated hydraulic conductivity (K) of the soils at the well screen depths.

The static water level within each monitoring well was measured prior to the start of testing. In advance of performing SWRTs, each monitoring well underwent development to remove fines introduced into the screens following construction. The development process involved purging of the monitoring wells to induce the flow of fresh formation water through the screen. Each monitoring well was permitted to fully recover prior to performing SWRTs.

Hydraulic conductivity values were calculated from the SWRT and constant rate test data as per Hvorslev's solution included in the Aqtesolv Pro. V.4.5 software package. The semi-log plots for normalized drawdown versus time are included in Appendix C.

A summary of the hydraulic conductivities (K-values) estimated from the SWRTs are provided in Table 3-2.

Monitoring Well	Well Depth (mbgs)	Screen Inte	erval (mbgs)	Soil formation Screened	Estimated Hydraulic Conductivity (m/s)	
		from	to			
BH/MW101	9.31	6.31	9.31	Silt	3.1E-7	
BH2	8.092	5.092	8.092	Sand to Silty Sand	1.9E-7	
BH/MW3	5.99	2.99	5.99	Sand to Silty Sand	1.5E-7	
BH6	5.47	2.47	5.47	Silty Sand	7.0E-7	
				Highest Estimated K Value	7.0E-7	
	2.8E-7					

Table 3-2: Summary of Hydraulic Conductivity Testing

SWRTs provide K-estimates of the geological formation surrounding the well screens and may not be representative of bulk formation hydraulic conductivity. As shown in Table 3-2, the highest K-value of the tested water-bearing zone is 7.E-7 m/s, and the geometric mean of the K-values is 2.8E-7 m/s.

3.4 Groundwater Quality

To assess the suitability for discharging pumped groundwater into the sewers owned by the City of Hamilton during dewatering activities, one (1) groundwater sample was collected from monitoring well BH 101-2021, on July 2, 2021 using a peristaltic pump. Prior to collecting the noted water sample, approximately three (3) standing well volumes of groundwater were purged from the referred well. The samples were collected unfiltered and placed into pre-cleaned laboratory-supplied vials and/or bottles provided with analytical test group specific preservatives, as required. Dedicated nitrile gloves were used during sample handling. The groundwater samples were submitted for analysis to Bureau Veritas Laboratory, a CALA certified independent laboratory in Mississauga, Ontario. Analytical results are provided in Appendix D.

Table 3-3 summarizes exceedance(s) of the Sanitary (Table 1) and Storm (Table 2) Sewer Use By-Law parameters.

When comparing the chemistry of the collected groundwater samples to the City of Hamilton Sanitary and Combined Sewer Discharge Criteria (Table 1), there were no parameter exceedances to be reported.

When comparing the chemistry of the collected groundwater samples to the City of Hamilton Storm Sewer Discharge Criteria (Table 2) the following parameters reported an exceedance: Total Suspended Solids (TSS).

Reporting detection limits (RDLs) were below the Sewer Use By-Law parameter criteria of Tables 1 and 2.

Parameter	Units	City of Hamilton Sanitary and Combined Sewer Discharge Limit (Table 1)	City of Hamilton Storm Sewer Discharge Limit (Table 2)	Concentration BH/MW101 02-Jul-2021
Total Suspended Solids (TSS)	mg/L	350	15	47

Table 3-3: Summary of Analytical Results

Bold – Exceeds City of Hamilton Storm Sewer Discharge Limit (Table 2).

Bold & underlined – Exceeds City of Hamilton Sanitary and Combined Sewer Discharge Limit (Table 1).

As part of Phase 2 ESA Investigation, groundwater samples were collected on November 27, 2020. The samples were submitted for the analysis of PHCs and VOCs. All parameters were either non-detected or detected below their applicable MECP (2011) Table 3 SCS.

For the short-term dewatering system (construction phase), it is anticipated that TSS levels and some other parameters (for example, Total Metals) in the pumped groundwater may become elevated and exceed both, Sanitary and Storm Sewer Use By-Law limits. To control the concentration of TSS and associated metals, it is recommended that a suitable treatment method be implemented (filtration or decantation facilities and/ or any other applicable treatment system) during construction dewatering activities to discharge to the applicable sewer system. The specifications of the treatment system will need to be adjusted to the reported water quality results by the treatment contractor/process engineer.

It is noted that the City of Hamilton does not permit any post construction dewatering of the foundation.

An agreement to discharge into the sewers owned by the City of Hamilton will be required prior to releasing dewatering effluent.

4 Dewatering Assessment

It is our understanding that the proposed development plan is to construct a proposed seven (7) storey mixed-use (residential and commercial) building with two levels of underground parking. Table 4-1 presents the assumptions used to calculate the dewatering rate for the Site.

Input Parameter	Assumption	Units	Notes
Ground Surface Elevation	248.24	masl	Approximate elevation based on the borehole logs and Site
Groundwater elevation	246.35	masl	The highest recorded groundwater elevation measured across the Site plus 1 meter to account for some seasonal fluctuation
Point Towers/Podiums	1 Towers, 1 Podiums	-	Assumed, based on proposal
Number of Subgrade Levels	2 Levels	-	Assumed, based on proposal
Top of Slab Elevation	242.24	masl	Assumption based on 3 m per subgrade level below ground surface elevation.
Lowest Footing Elevation	240.74	masl	Assumed to be approximately 1.5 m below the top of slab elevation
Construction Dewatering Elevation Target	239.74	masl	Assumed to be approximately 1.0 m below the lowest footing elevation
Bottom Elevation of Water- Bearing Zone	213.4	masl	Top elevation of bedrock from Feenstra (1981)
Excavation Area (Length x Width)	3,744 (52 x 72)	m² (m x m)	Approximate area (length x width) of Site for the proposed development (per SRM Architects Inc. figures dated 2022-04-27)
Hydraulic Conductivity (K)	7.0E-7	m/s	Highest K-value for overburden
Specific Yield	0.1	1	Assumed for Silty Sand

Table 4-1 Construction Dewatering Estimate Assumptions

4.1 Dewatering Flow Rate Estimate and Zone of Influence

The Dupuit-Forcheimer equation for radial flow to both sides of an excavation through an unconfined aquifer resting on a horizontal impervious surface was used to obtain a flow rate estimate. Dewatering flow rate is expressed as follows:

$$Q_w = \frac{\pi K (H^2 - h^2)}{Ln \left[\frac{R_o}{r_e}\right]}$$

$$r_e = \frac{a+b}{\pi} \qquad \qquad R_o = R_{cj} + r_e$$

Where:

Qw = Rate of pumping (m³/sec)

X = Length of excavation (m)

K = Hydraulic conductivity (m/sec)

- H = Hydraulic head beyond the influence of pumping (static groundwater elevation) (m)
- h = Hydraulic head above the base of aquifer in an excavation (m)
- R₀ = Radius of influence (m)
- R_{cj} = Cooper Jacob radius of influence (m)
- r_e = Equivalent perimeter (m)
- a = Length of the excavation area (m)
- *b* = Width of the excavation area (m)

It is expected that the initial dewatering rate will be higher to remove groundwater from within the overburden formation. The dewatering rates are expected to decrease once the target water level is achieved in the excavation footprint as groundwater will have been removed, primarily from storage, resulting in lower seepage rates into the excavation.

4.2 Cooper-Jacob's Radius of Influence

The radius of influence (Rcj) for the construction dewatering was calculated based on Cooper-Jacob equation. This equation is used to predict the distance at which the drawdown resulting from pumping is negligible.

The estimated radius of influence due to pumping is based on Cooper-Jacob formula as follows:

$$R_{cj} = \sqrt{2.25KDt/s}$$

Where:

Ro = Estimated radius of influence (m)

- D = Aquifer thickness (original saturated thickness) (m)
- K = Hydraulic conductivity (m/sec)
- S = Storage coefficient
- t = Duration of pumping (s)

Based on Cooper-Jacob's formula and the highest K-value, the calculated radius of influence (Rcj) is provided in Appendix E.

4.3 Stormwater

Additional pumping capacity may be required to maintain dry conditions within the excavation during and following significant precipitation events. Therefore, the dewatering rates at the Site should also include removing stormwater from the excavation.

A 15 mm precipitation event was utilized for estimating the stormwater volume. The calculation of the stormwater volume is included in Appendix E.

The estimate of the stormwater volume only accounts for direct precipitation into the excavation. The dimensions of the excavation are considered in the dewatering calculations. Runoff from outside of the excavation's footprint is excluded and it should be directed away from the excavation.

During precipitation events greater than 15 mm (ex: 100-year storm), measures should be taken by the contractor to retain stormwater onsite in a safe manner to not exceed the allowable water taking and discharge limits, as necessary. A two (2) and a one hundred (100) year storm event over a 24-hour period are 59.1 and 129.9 mm, respectively, which would produce 221.3 and 486.3 m³ of water.

4.4 Results of Dewatering Rate Estimates

4.4.1 Construction Dewatering Rate Estimate

For this assessment, it was assumed that the proposed construction plans include an excavation with shoring extending to the Site boundaries. EXP should be retained to review the assumptions outlined in this section, should the assumed shoring design change. Short-term (construction) dewatering calculations are presented in Appendix E. Pits (elevator, sump pits) are assumed to have the same excavation depth and dewatering target as the main excavation; deeper pits may require localized dewatering and revised dewatering estimates.

Based on the assumptions provided in this report, the results of the dewatering rate estimate can be summarized as follows:

Peak Dewatering Flow Rate Including Rain Collection Volume and Zone of Influence						
Description	With 2 Levels of Underground Parking (m³/day)					
Estimated Short Term Dewatering Rate (without safety factor or precipitation)	113					
From Precipitation Event of 15 mm in one day	56					
With Factor of Safety of 2.0 (excluding Precipitation) for EASR	227					
With Factor of Safety of 2.0 (including Precipitation) for designs, and budgeting	283					
Radius of Influence from sides of excavation (m)	37					

Table 4-2 Summary of Construction Dewatering Rate

The peak dewatering flow rates does not account for flow from utility beddings and variations in hydrogeological properties beyond those encountered during this investigation.

Local dewatering may be required for pits (elevator pits, sump pits), if these extend deeper than the dewatering target. Local dewatering is not considered to be part of this assessment. Dewatering estimates should be reviewed once the pit dimensions are available.

All grading around the perimeter of the excavation should be graded away from the shoring the systems and ramp/site access to redirect runoff away from excavation. The dewatering assumptions are based on using shoring system without open cuts and sloped excavations.

If caisson walls are installed, these should be designed for full hydrostatic pressure for shallow and deep water levels, without dewatering on the outside. Soldier pile and lagging and caisson wall systems should be designed to account for shallow groundwater conditions and take into consideration that dewatering systems may not provide fully dewatered conditions.

All grading around the perimeter of the construction Site should be graded away from the shoring the system.

The contractor is responsible for the design of the dewatering systems (depth of wells, screen length, number of wells, spacing sand pack around screens, prevent soil loss etc.) to ensure that dry conditions are always maintained within the excavation at all costs.

Dewatering should be monitored using dedicated monitoring wells within and around the perimeter of the excavation, and these wells should be monitored using manual measurements and with electronic data loggers; records should be maintained on site to track dewatering progress. Discharge rates should be monitored using calibrated flow meters and records of dewatering progress, and daily precipitation as per MECP requirements should be maintained.

4.4.2 Post-Construction Dewatering Rate Estimate

It is our understanding that the development plan does not include a permanent foundation sub-drain system that will ultimately discharge to the municipal sewer system, and therefore post-construction dewatering is not required. Further, it is noted that the City of Hamilton does not permit any post-construction dewatering of the foundation. As a result, the underground levels will need to be made watertight without any foundation drains (sub-slab and perimeter) and designed for full hydrostatic pressure.

4.5 MECP Water Taking Permits

In accordance with the Ontario Water Resources Act, if the water taking for the construction dewatering is more than 50,000 L/day but less than 400,000 L/day, then an online registration in the Environmental Activity and Sector Registry (EASR) with the MECP will be required. If groundwater dewatering rates onsite exceed 400,000 L/day, a Category 3 Permit to Take Water (PTTW) will be required from the MECP.

As of July 1, 2021 an amendment of O. Reg. 63/16 has come into effect and replaced the former subsection 7 (5) such that the water taking limit of 400,000 L/day would apply of groundwater takings of each dewatered work area only, excluding stormwater.

It is recognized that the maximum flow estimate calculated with a high K-value, provides a conservative estimate to account for higher than expected flow rates during the construction dewatering. The dewatering estimate (including a safety factor and excluding precipitation) is stated below. The MECP construction dewatering flow rate excludes the precipitation amount and is the rate used for the permit application. Based on the MECP construction dewatering an EASR would be required to facilitate the construction dewatering program of the Site.

Table 4-3: MECP Construction Dewatering Flow Rate

Scenario	Flow Rate (m ³ /day)
MECP Construction Dewatering Flow Rate With Safety Factor of 2.0	227
(excluding rainwater collection)	

A Discharge Plan (dewatering sketch, sewer discharge agreement) must be developed and applied for any discharges from the Site. Monitoring of both water quantity and water quality must be carried out for the entire duration of the construction dewatering phase. During this phase, the Discharge Plan and the daily water taking records must be available onsite.

The EASR, Discharge Plan, hydrogeological investigation report, and geotechnical assessment of settlements must also be available at the construction Site during the entire construction dewatering. EXP should be notified immediately about any changes to the construction dewatering schedule or design, since the EASR will need to be updated to reflect these modifications. Altogether, the hydrogeological report, EASR, Discharge Plan and geotechnical assessment constitute the Water Taking Plan which needs to be available onsite during the construction dewatering.

5 Environmental Impact

5.1 Surface Water Features

The Site is within the Spencer Creek watershed. No surface water features exist onsite. The nearest surface water feature is an unnamed tributary, located approximately 400 m north of the Site boundary. The nearest surface water feature is Lake Ontario, is approximately 9.4 km from the Site boundary to the northeast.

Due to the limited extent of zone of influence and the wide distance to the nearest surface water feature, no detrimental impacts on surface water features are expected during construction activities.

5.2 Groundwater Sources

Well Records from the MECP Water Well Record (WWR) Database were reviewed to determine the presence and number of water supply wells within a 500 m radius of the Site boundaries. Given that the dewatering zone of influence is limited, no dewatering related impact is expected on the water supply wells in the area.

5.3 Geotechnical Considerations

As per the MECP technical requirement for PTTW and EASRs, the geotechnical assessment of the stability of the soils due to water taking (ex: settlement, soil loss, subsidence, etc.) is required. The water taking should not have unacceptable interference on soils and underground structures (foundations, utilities, etc.).

A letter related to geotechnical issues as it pertains to the Site is required to be completed under a separate cover.

5.4 Groundwater Quality

It is our understanding that the potential effluent from the dewatering system during the construction will be released to the municipal sewer system. As such, the quality of groundwater discharge is required to conform the City of Hamilton Sewer Use By-Law.

For the short-term dewatering system (construction phase), it is anticipated that Chlorides, TSS levels and some other parameters (for example, Total Metals) in the pumped groundwater may become elevated and exceed both, Sanitary and Storm Sewer Use By-Law limits. To control the concentration of TSS and associated metals, it is recommended that a suitable treatment method be implemented (filtration or decantation facilities and/ or any other applicable treatment system) during construction dewatering activities to discharge to the applicable sewer system. The specifications of the treatment system will need to be adjusted to the reported water quality results by the treatment contractor/process engineer.

It is noted that the City of Hamilton does not permit any post construction dewatering of the foundation.

Dewatering (short-term) may induce migration of contaminants within the zone of influence and beyond due to changing hydraulic gradients, hydrogeological conditions beyond Site boundaries and preferential pathways in utility beddings etc. The water quality sampling conducted as part of this assessment was performed under static conditions. As a result, monitoring may be required during dewatering activities (short-term) to monitor potential migration, and this should be performed more frequently during early dewatering stages.

An agreement to discharge into the sewers owned by the City of Hamilton will be required prior to releasing dewatering effluent.

17

5.5 Well Decommissioning

In conformance with Regulation 903 of the Ontario Water Resources Act, the installation and eventual decommissioning of any dewatering system wells or monitoring wells must be completed by a licensed well contractor. This will be required for all wells that are no longer in use.

6 Conclusions and Recommendations

Based on the findings of the Hydrogeological Investigation, the following conclusions and recommendations are provided:

- When comparing the chemistry of the collected groundwater samples to the City of Hamilton Sanitary and Combined Sewer Discharge Criteria (Table 1), there were no parameter exceedances to be reported.
- When comparing the chemistry of the collected groundwater samples to the City of Hamilton Storm Sewer Discharge Criteria (Table 2) the following parameters reported an exceedance: Total Suspended Solids (TSS).
- Based on the assumptions outlined in this report, the estimated peak dewatering rate for proposed construction activities is approximately 283,000 L/day. This is the rate which will be required to be discharged to the municipal sewer system. As the dewatering flow rate estimate is between 50,000 L/day and 400,000 L/day, an EASR would be required to facilitate the construction dewatering program for the Site.
- It is our understanding that the development plan does not include a permanent foundation sub-drain system that will
 ultimately discharge to the municipal sewer system, and therefore post-construction dewatering is not required. Further,
 it is noted that the City of Hamilton does not permit any post-construction dewatering of the foundation. As a result, the
 underground levels will need to be made watertight without any foundation drains (sub-slab and perimeter) and designed
 for full hydrostatic pressure.
- The construction dewatering discharge volumes is based on the assumptions outlined in this report. Any variations in hydrogeological conditions beyond those encountered as part of this investigation may significantly influence the discharge volumes.
- For the short-term dewatering system (construction phase), it is anticipated that chlorides, TSS levels and some other parameters (for example, Total Metals) in the pumped groundwater may become elevated and exceed both, Sanitary and Storm Sewer Use By-Law limits. To control the concentration of TSS and associated metals, it is recommended that a suitable treatment method be implemented (filtration or decantation facilities and/ or any other applicable treatment system) during construction dewatering activities to discharge to the applicable sewer system. The specifications of the treatment system will need to be adjusted to the reported water quality results by the treatment contractor/process engineer.
- As per the MECP technical requirement for EASRs, the geotechnical assessment of the stability of the soils due to water taking (ex: settlement, soil loss, subsidence etc.) is required. The water taking should not have unacceptable interference on soils and underground structures (foundations, utilities etc.). A letter related to geotechnical issues as it pertains to the Site is required to be completed under a separate cover.
- An agreement to discharge into the sewers owned by the City of Hamilton will be required prior to releasing construction dewatering effluent.
- The EASR registration allows construction dewatering discharge of up to 400 m³/day. A Discharge Plan (dewatering sketch, sewer discharge agreement) must be developed and applied for any discharges from the Site. The Discharge Plan and monitoring for both water quantity and water quality must be carried at the Site during the entire construction dewatering phase. The daily water taking records must be maintained onsite for the entire construction dewatering phase. The EASR, Discharge Plan, hydrogeological investigation report, and geotechnical assessment of settlements must always also be available at the construction dewatering schedule or design, since EASR will need to be updated to reflect these modifications. Altogether, the hydrogeological report, EASR, Discharge Plan and geotechnical assessment constitutes the Water Taking Plan which needs to be available onsite for the duration of construction dewatering.

In conformance with Regulation 903 of the Ontario Water Resources Act, the installation and eventual decommissioning
of any dewatering system wells or monitoring wells must be completed by a licensed well contractor. This will be required
for all wells that are no longer in use.

The conclusions and recommendations provided above should be reviewed in conjunction with the entirety of the report. They assume that the present design concept described throughout the report will proceed to construction. This report is solely intended for the construction dewatering assessment. Any changes to the design concept may result in a modification to the recommendations provided in this report.

20

7 Limitations

This report is based on a limited investigation designed to provide information to support an assessment of the current hydrogeological conditions within the study area. The conclusions and recommendations presented within this report reflect Site conditions existing at the time of the assessment. EXP must be contacted immediately, if any unforeseen Site conditions are experienced during construction activities. This will allow EXP to review the new findings and provide appropriate recommendations to allow the construction to proceed in a timely and cost-effective manner.

Our undertaking at EXP, therefore, is to perform our work within limits prescribed by our clients, with the usual thoroughness and competence of the geoscience/engineering profession. No other warranty or representation, either expressed or implied, is included or intended in this report.

This report was prepared for the exclusive use of Elite M.D. Developments. This report may not be reproduced in whole or in part, without the prior written consent of EXP, or used or relied upon in whole or in part by other parties for any purposes whatsoever. Any use which a third party makes of this report, or any part thereof, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

We trust that this information is satisfactory for your purposes. Should you have any questions or comments, please do not hesitate to contact this office.

Sincerely,

EXP Services Inc.

Nicolas Sabo, B.Sc., M.E.S. Environmental Scientist Environmental Services

E 4 11. 0 FRANCOIS CHARTIER PRACTISING MEMBER 2270 ONTAR

Francois Chartier, M.Sc., P. Geo. Head of Hydrogeology Group Environmental Services

8 References

Armstrong, D.K. and Dodge, J.E.P. 2007. Paleozoic geology of southern Ontario; Ontario Geological Survey, Miscellaneous Release--Data 219.

Cashman and Preene (2013) Groundwater Lowering in Construction, 2nd Edition.

Chapman, L.J. and Putnam, D.F. (2007). Physiography of Southern Ontario, 3rd Edition, Ontario Geological Survey.

EXP Services Inc. (June 30, 2021), Draft Geotechnical Investigation Report, 559 Garner Road East, ON, prepared for Elite M.D. Developments.

EXP Services Inc. (December 21, 2020), Phase Two Environmental Site Assessment, 559 Garner Road East, ON, prepared for Garner South M.D. Developments.

Feenstra, B.H. 1981. Bedrock topography of the Grimsby Area, Southern Ontario; Ontario Geological Survey Preliminary Map P.2401, Bedrock Topography Series. Scale 1:50 000.

J.P. Powers, A.B. Corwin, P.C. Schmall and W.E. Kaeck (2007). Construction Dewatering and Groundwater Control, Third Edition.

Ministry of Northern Development and Mines (May, 2012). OGS Earth. Retrieved from http://www.mndm.gov.on.ca/en/mines-and-minerals/applications/ogsearth.

Figures

Appendix A – MECP WWR Summary Table

*exp.

	On-Site															
BORE_HOLE_ID	WELL_ID	DATE	EAST83	NORTH83	ELEVATION (m ASL)	LOCATION ACCURACY	STREET	СІТҮ	DISTANCE TO SITE BOUNDARY (m)	CONSTRUCTION METHOD	WELL DEPTH (m bgs)	WATER FOUND (m bgs)	CASING DIAMETER (cm)	1st USE	2nd USE	FINAL STATUS
1006214487	7269042	8/2/2016	584690	4784275	247.5	margin of error : 30 m - 100 m	HWY 53 & SOUTHCOTE RD.	Hamilton	30	Boring				Monitoring		Observation Wells
1006214490	7269043	8/2/2016	584741	4784265	247.9	margin of error : 30 m - 100 m	HWY 53 & SOUTHCOTE RD.	Hamilton	26	Boring				Monitoring		Observation Wells
1006214496	7269044	8/2/2016	584741	4784232	248.9	margin of error : 30 m - 100 m	HWY 53 & SOUTHCOTE ROAD	Hamilton	38	Boring				Monitoring		Observation Wells
1006214499	7269045	7/29/2016	584703	4784225	249.2	margin of error : 30 m - 100 m	HWY 53 & SOUTHCOTE RD.	Hamilton	37	Boring				Monitoring		Observation Wells
1006796540	7299090	11/7/2017	584740	4784265	247.9	margin of error : 30 m - 100 m	HIGHWAY 53 AND SOUTHCOTE ROAD	HAMILTON	25							
1006796543	7299091	11/7/2017	584690	4784274	247.5	margin of error : 30 m - 100 m	HIGHWAY 53 AND SOUTHCOTE ROAD	HAMILTON	29							
1006796647	7299096	11/7/2017	584740	4784231	248.9	margin of error : 30 m - 100 m	HIGHWAY 53 AND SOUTHCOTE ROAD	HAMILTON	38							
1006796537	7299089	11/7/2017	584695	4784227	249.1	margin of error : 30 m - 100 m	HIGHWAY 53 AND SOUTHCOTE ROAD	HAMILTON	38							
								C	ff-Site							
BORE_HOLE_ID	WELL_ID	DATE	EAST83	NORTH83	ELEVATION (m ASL)	LOCATION ACCURACY	STREET	СІТҮ	DISTANCE TO SITE BOUNDARY (m)	CONSTRUCTION METHOD	WELL DEPTH (m bgs)	WATER FOUND (m bgs)	CASING DIAMETER (cm)	1st USE	2nd USE	FINAL STATUS
10479563	6802101	9/26/1962	584560	4784615	247.4	margin of error : 100 m - 300 m			388	Cable Tool	18.3	18.3	12.7	Domestic		Water Supply
10479564	6802102	4/7/1962	584588	4784455	247.8	margin of error : 100 m - 300 m			233	Cable Tool	44.2	36.6	15.2	Domestic		Water Supply
10479567	6802105	11/12/1955	584527	4784758	248.8	UTM very unreliable			533	Cable Tool	33.5	32.6	15.2	Domestic		Water Supply
10479571	6802109	9/22/1962	584545	4784645	247.5	margin of error : 100 m - 300 m			421	Cable Tool	49.1	42.7	15.2	Domestic		Water Supply
10479574	6802112	2/5/1957	584673	4784385	248.0	UTM very unreliable			132	Cable Tool	33.5	33.5	15	Domestic		Water Supply
10479575	6802113	8/6/1952	585032	4784679	250.3	UTM very unreliable			526	Cable Tool	34.1	34.1	15	Domestic		Water Supply
10479576	6802114	11/7/1959	584844	4784327	250.1	margin of error : 100 m - 300 m			146	Cable Tool	46.3	46.3	15	Industrial		Water Supply
10479577	6802115	9/8/1965	584841	4784513	251.0	margin of error : 100 m - 300 m			283	Boring	14.6	4.3	76	Irrigation	Domestic	Water Supply
10479578	6802116	8/12/1960	584771	4784535	249.9	UTM very unreliable			281	Rotary (Convent.)	32.3	15.2	5	Not Used		Test Hole
10479579	6802117	8/15/1960	584972	4784377	250.0	UTM very unreliable			283	Rotary (Convent.)	31.7	13.1	13	Not Used		Test Hole
10479580	6802118	8/18/1960	585035	4784400	249.8	UTM very unreliable			349	Rotary (Convent.)	31.4	11.9	5	Not Used		Test Hole
10479582	6802120	1/11/1961	584595	4784673	248.1	margin of error : 100 m - 300 m			430	Cable Tool	19.8	16.8	13	Domestic		Water Supply
10479584	6802122	3/24/1962	585037	4784558	249.0	margin of error : 100 m - 300 m			439	Cable Tool	33.2	32.6	15	Domestic		Water Supply
10479585	6802123	5/28/1962	585059	4784681	250.5	margin of error : 100 m - 300 m			544	Cable Tool	39.6	35.1	15	Domestic		Water Supply
10479670	6802208	5/4/1957	584618	4784211	246.7	margin of error : 100 m - 300 m			109	Cable Tool	14.3	12.2	15	Commerical		Water Supply
10479672	6802210	5/23/1962	584440	4784163	247.3	margin of error : 100 m - 300 m			291	Boring	9.1	7.0	76	Domestic		Water Supply
10485066	6807659	8/19/1970	584894	4784273	249.4	margin of error : 30 m - 100 m			179	Cable Tool	19.2	14.9	15	Domestic		Water Supply
10486317	6808964	9/29/1974	584674	4783923	250.0	margin of error : 30 m - 100 m			339	Boring	4.6	2.1	91	Commerical		Water Supply
10486623	6809273	9/15/1975	584655	4784133	247.5	margin of error : 30 m - 100 m			140	Boring	9.1	4.0	91	Commerical	Domestic	Water Supply
10487519	6810190	10/18/1980	584674	4784523	248.9	margin of error : 30 m - 100 m			267	Cable Tool	17.1	13.7	15	Domestic		Water Supply
10487560	6810234	8/30/1980	585234	4784343	249.7	margin of error : 30 m - 100 m			526	Cable Tool	44.8	42.7	15	Domestic		Water Supply
10487949	6810625	12/15/1983	584556	4784113	250.2	margin of error : 10 - 30 m			216	Boring	9.1	6.1	91	Domestic		Water Supply
10488215	6810897	10/17/1985	585121	4784354	250.0	margin of error : 100 m - 300 m			417	Boring	7.6	0.3	91	Domestic		Water Supply
10489274	6811960	9/24/1990	584750	4784024	249.9	margin of error : 10 - 30 m			238	Cable Tool	46.0	40.8	15	Domestic		Water Supply
11108359	6814022	4/13/2004	584900	4784175	250.1	margin of error : 100 m - 300 m	605 GARNER RD.	ANCASTER	203	Boring	3.9	1.5	5			Observation Wells
1005121458	7227156	6/12/2014	584549	4784182	247.4	margin of error : 30 m - 100 m	515 GARNER RD. W	ANCASTER	184	Auger	4.6	4.0	5	Monitoring		Observation Wells
1002717293	7129346	7/24/2009	584890	4784334	250.1	margin of error : 10 - 30 m	617 GARNER RD.	ANCASTER	190					Not Used		Abandoned-Other
1002/1/296	/12934/	//24/2009	5849/1	4/84319	249.9	margin of error : 10 - 30 m	621 GARNER RD.	ANCASTER	262							
1002717299	7129348	7/24/2009	584968	4784317	249.9	margin of error : 10 - 30 m	625 GARNER RD.	ANCASTER	259							Abandoned-Other
10034//106	/159394	5/12/2010	584604	4/84613	248.0	margin of error : 10 - 30 m	431 SOUTHCOTE RD		3/1							Abandoned-Other
10034//108	/159395	5/18/2010	584650	4/84380	247.7	margin of error : 10 - 30 m	489 SOUTHCOTE RD		137							Abandoned-Other
1003477110	7159396	5/18/2010	584684	4784378	248.1	margin of error : 10 - 30 m	497 SOUTHCOTE RD		123							Abandoned-Other
10034//144	/159413	5/18/2010	584657	4/84334	246.9	margin of error : 100 m - 300 m	483 SOUTHCOTE RD		95				-	NJ		Abandoned-Other
23050735	/050735	8/28/2007	584237	4/84125	247.4	margin of error : 10 - 30 m			497	Rotary (Convent.)			5	Not Used		Observation Wells
100/293519	/319613	6/26/2018	585062	4/84338	247 6	margin of error : 30 m - 100 m	627 GARNER RD	ANCASTER	355	Boring				Monitoring		Observation Wells
1005869507	/256133	12/3/2015	584508	4/841/9	247.4	margin of error : 30 m - 100 m	507 GARNER RD	HAMILION	223	Digging				Not Used		Abandoned-Other
1006363442	/282607	4/18/2016	584608	4/84365	247.0	margin of error : 30 m - 100 m	492 SOUTHGATE RD	Hamilton	151	NI - 1-14						Abandoned-Other
10490723	6813416	10/16/2000	584894	4/842/3	249.4	margin of error : 30 m - 100 m			1/9	NOT KNOWN				NJ		Abandoned-Other
10536664	6813/40	//8/2002	584/25	4/84448	249.3	margin of error : 100 m - 300 m			189	Not Known				Not Used		Abandoned-Other
1002940296	/1402/8	10/14/2009	584813	4/846//	250.1	margin of error : 30 m - 100 m			429							
1002943136	/140719	10/14/2009	584813	4/84677	250.1	margin of error : 30 m - 100 m			429							

	COUNT	
Monitoring Well / Test Hole	11	
Dewatering Well	0	
Water Supply Well	21	
Abandoned Well	10	
Unclassified / Unfinished Well	7	
TOTAL	49	

Appendix B – Borehole Logs

*exp.

EXP Services Inc. Hamilton, ON Telephone: 905.573.4000 Facsimile: 905.573.9693

Water Level (m) Depth to Cave (m) on completion 8.2 open			-
on completion 8.2 open	Time	Water Level (m)	Depth to Cave (m)
	on completion	8.2	open

oject No	<u>HAM-00802098-B</u> 0				Drawing No.	10	0
oject:	Proposed Mixed-Use Deve	elopme	nt		Sheet No.	1_ of	i _
ocation:	559 Garner Road East, An	icaster,	ON				
ate Drille ill Type: atum:	d: June 25, 2021 D-70 Track. Solid Augers. Geodetic		Auger Sample SPT (N) Value Dynamic Cone Test Shelby Tube Field Vane Test		Combustible Vapour Reading Natural Moisture Plastic and Liquid Limit H Undrained Triaxial at % Strain at Failure Penetrometer	× ⊕	
S Y B O	Soil Description	ELEV. m	D N Value P 20 40 6 T Shear Strength	0 80 kPa	Combustible Vapour Reading (pp 25 50 75 Natural Moisture Content % Atterberg Limits (% Dry Weight	m) SAN MPLV	Jati Ur Nei
T	OPSOIL: (~150 mm thick)	248.99 ~~248.8		200	10 20 30	<u>s</u> ~	<u></u>
Figure 1	ILL: silty clay, trace sand, trace ravel, trace rootlets, brown, moist	_			×		
₩₩ S lo	ILTY SAND: trace clay, brown, pose, moist	~247.5	Ô		*		
	ompact, very moist to wet below 2.3	_	19 O		*		
		-	3 <u>16</u> 4		×		
	ILT: trace gravel, grey, very dense, ery moist	=~244.4 	5	50/12	Š ^{mm} ×		
		_	6	79	×		
		_	7				
_d	ense, wet below 7.6 m	_	8		×		
		~230.2			×		
B N 1. su pi 2. re	orehole terminated at 9.8 m depth OTES: This drawing is to be read with the ubject report and project number as resented above. Interpretation assistance by EXP is aguired before use by others.	203.2					

EXP Services Inc. Hamilton, ON Telephone: 905.573.4000 Facsimile: 905.573.9693

		-
Time	Water Level (m)	Depth to Cave (m)
on completion	6.1	6.1

Project: Proposed Mixed-Use Development			_	awing No.	Drawir									HAM-00802098-B0						
Automic 559 Gamer Road East, Ancaster, ON Date Drilled: November 12, 2020 CME 50 Track. Solid Augers. Datum: Auger Sample Dynamic Con Test Geodetic Image: Contract Contract Contract Contract Con	<u> </u> 0	1	_	Sheet No.	She							ment	Develop	Proposed Mixed-Use	:	oject				
Date Drilled: November 12, 2020 Auge Sample Cm E So Track. Solid Augers. Datum: Cecdetic Opamic Constant Cm E So Track. Solid Augers. Datum: Cecdetic Pair Value Combatible Vapour Reading Solid Description Pair Value Pair Value Combatible Vapour Reading TOPSOLL: (~150 mm thick) Pair Value Pair Value Combatible Vapour Reading (m) Solid Description Call Pair Value Pair Value Combatible Vapour Reading (m) Solid Description Call Pair Value Combatible Vapour Reading (m) Pair Value Combatible Vapour Reading (m) Solid Description Call Pair Value Combatible Vapour Reading (m) Pair Value Combatible Vapour Reading (m) Solid Description Call Pair Value Pair Value Combatible Vapour Reading (m) Pair Value Pair											N	ter, O	t, Ancas	559 Garner Road Eas	n:	catio				
Batum: Geodetic Shety Tue % Statu at Failure ¹ Book (1) (-150 mm thick) ¹ Fill.1 clayey silt, trace to some sand, ¹ Pown, moist, some rootlets (possible ¹ Pown, wet, dense to very dense ¹ for some rootlets (possible ¹ Pown, wet, dense to very dense ¹ Pown, wet, dense to	□ × -0	[∍ ⊢	apour Reading re juid Limit – axial at	Combustible Vapou Natural Moisture Plastic and Liquid L Undrained Triaxial a	C N P U			e Test	r Sample N) Value nic Cone	Auge SPT Dyna		Augers.	November 12, 2020 CME 50 Track. Solid /	rilled: pe:	te Di II Tyj				
Soil Description FLE: V. 248.88 Provide the solution of the solut		▲		ilure	% Strain at Failure Penetrometer	% P	s S		st	y Tube Vane Te	Shelt Field			Geodetic		tum:				
TOPSOIL: (-150 mm thick) FILL: clayey sill, trace to some sand, brown, moist, compact loose layer at 1.5 m SAND to SILTY SAND to SILT: trace clay, brown, wet, dense to very dense grey below 6.1 m Borehole terminated at 8.2 m depth NOTES: 1. This drawing is to be read with the spresented above. 2. Interpretation assistance by EXP is required before use by others. 10 10 10 10 10 10 10 10 10 10	SAMPLIE	n) 5	opm)	pour Reading (pp 50 75 sture Content % its (% Dry Weight	Combustible Vapour I 25 50 Natural Moisture Atterberg Limits (%	kPa	0 80	Value 6	N \ 40 th	20 ar Streng	She	_EV.	E	Soil Description		SYMBOL				
SAND to SILTY SAND: trace clay, losse layer at 1.5 m - - - - - - - - - - - - - - - - - - -				X	*					5	1	.88 c 8.7 .8.1	24 ~~2 	SOIL: (~150 mm thick) : clayey silt, trace to some sa /n, moist, some rootlets (poss orked native soil)	TOPS FILL: brown reworl					
Loose layer at 1.5 m Loose layer at 1.5 m				×	×					>	Ċ	1	_	D to SILTY SAND: trace clay, /n, moist, compact	- SAND brown					
SILTY SAND to SILT: trace clay, brown, wet, dense to very dense grey below 6.1 m 				×	×						Ó	2	_	e layer at 1.5 m	loose _					
-244.3 SiLTY SAND to SiLT: trace clay, brown, wet, dense to very dense grey below 6.1 m Borehole terminated at 8.2 m depth NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others. 10 10 10 10 10 10 10 10 10 10				×	×					Ö		3	_		_					
 SiLTY SAND to SiLT: trace clay, brown, wet, dense to very dense grey below 6.1 m grey below 6.1 m Borehole terminated at 8.2 m depth NOTES: 1. This drawing is to be read with the supesented above. 2. Interpretation assistance by EXP is required before use by others. 				×	×					Ö			_		_					
SILTY SAND to SILT: trace clay, brown, wet, dense to very dense	-											4.3			_					
grey below 6.1 m - - - - - - - - - - - - -					5 mm D X	50/125 m						5	_	Y SAND to SILT: trace clay, /n, wet, dense to very dense	SILTY _brown					
Borehole terminated at 8.2 m depth NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others.												6	_	helew 6.1 m	— —					
Borehole terminated at 8.2 m depth NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others.					×		ð					7	_							
Borehole terminated at 8.2 m depth NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others.									43				_		_					
NOTES: 1. This drawing is to be read with the subject report and project number as presented above. 2. Interpretation assistance by EXP is required before use by others.				<	×				Ő			0.7		phole terminated at 8.2 m dep	_ Boreh					
2. Interpretation assistance by EXP is required before use by others.												g	the as	ES: his drawing is to be read with ect report and project number ented above	NOTE 1. This subject					
												1	Pis	terpretation assistance by EX ired before use by others.	2. Inte requir					
												1								

 Time
 Water Level (m)
 Depth to Cave (m)

 on completion
 3.1
 4.6

roject No.	HAM-00802098-B0							Drawing	No.		4
oject:	Proposed Mixed-Use Deve	lopmen	t					Sheet	No.	1 c	of
ocation:	559 Garner Road East, An	caster,	٥N	١				-			
ate Drilled: rill Type:	November 12, 2020 CME 50 Track. Solid Auge	rs.	- / - : - :	Auger Sample SPT (N) Value Dynamic Cone Test Shelby Tube	0		Comb Natura Plastic Undra % Stra	ustible Vapour Re al Moisture c and Liquid Limit ined Triaxial at ain at Failure	eading	, □ × ⊕	
atum:	Geodetic		_ F	Field Vane Test		s	Penet	rometer			
SY M B O L	Soil Description	ELEV. m	D E P T H	N V 20 40 Shear Strength 100	alue 60	80 kPa 200	Combu Na Atter	Istible Vapour Rea 25 50 tural Moisture Con berg Limits (% Dry 10 20	iding (ppm) 75 itent % / Weight) 30	SAMP-LIES	Nat U We kN
FILL	PSOIL: (~175 mm thick) L: sandy silt, trace clay and rel, brown, moist, trace rootlets and	~248.8	0	15 O				× .			
FILI	: clayey silt, trace to some sand, vn, moist, some rootlets (possible prked native soil)	~247.5		15 O				x			
SAN brov	ID to SILTY SAND: trace clay, vn, moist, compact	-	2	15 Ŏ				*			
			3	Ö				×			
som	- 	_		Ö				×			
	TY SAND to SILT: trace clay,	~244.4	4+	Ö		94			*		
brov	vn, wet, very dense	~243.9	5			O 50/12	5 mm	×			
	v below 6.1 m	_	6		7	3)	× .			
		_	7		57			×			
		-									
Bor	ehole terminated at 8.2 m depth	~240.8	8		Υ						
NO 1. T subj pres 2 Ir	TES: his drawing is to be read with the ect report and project number as sented above. terpretation assistance by FXP is		9								
requ	lired before use by others.		10								
1 1		1	1 ‡		+ + + + + + +					+1 1	

Water Level (m) 4.6 5.18 5.12 5.11 Depth to Cave (m) 4.6 --Time on completion Nov. 20, 2020 Nov. 23, 2020 Nov. 27, 2020

			Lo	g of	F	30	re	h	ol	e]	B	H-	3						
Ρ	roject	No.	HAM-00802098-B0	-										Dra	awing I	No.		Ę	5
Ρ	oject	:	Proposed Mixed-Use Dev	elopmen	nt									. 5	Sheet I	No.	1	_ 0	f _1
Lo	ocatio	n:	559 Garner Road East, Ar	ncaster,	O	N													
D D D	ate Dı rill Ty _l atum:	rilled: pe:	November 20, 2020 D50 Track. Solid Augers. Geodetic		_	Auger : SPT (N Dynam Shelby Field V	Sampl I) Valu ic Cor Tube ane T	le le ne Te: est	st	<u> </u>			Combu Natura Plastic Undrai % Stra Penetr	Combustible Vapour Reading Natural Moisture Plastic and Liquid Limit I Jndrained Triaxial at % Strain at Failure Penetrometer			⊕ ▲	□ × -0	
G W L	S Y B O		Soil Description	ELEV. m	D E P T H	Shear	20 r Stren	4i igth	N Vali	ue 60	80	kPa	Combus 2 Nat Attert	stible Vap 25 tural Mois berg Limit	oour Read 50 ture Cont ts (% Dry	ling (pp 75 ent % Weight)	m)	SAMP-LE	Natural Unit Weight kN/m ³
5		TOP FILL brow	'SOIL: (~175 mm thick) .: silt, some clay and sand, vn, moist, trace rootlets	248.80 ~_248.6	0	13 O		10								30		s ////////////////////////////////////	
		 brow	ID to SILTY SAND: trace clay, vn, moist, loose	~247.2 	2	ð													
		 wet, 	very loose below 3.1 m	-	3														
		 SILT brow	FY SAND to SILT: trace clay, vn, moist, very dense	~244.2 	5							91 Ö							
		 very 	moist below 6.1 m	~243.3 	6						72 Ö								
AB.GD1 6/30/		grey	v below 7.6 m	~240.6	8							90 Ö							
GWGLJHHAM-EXP BHLOGS.GPJ GINI SID US		NOT 1. Tł subj pres 2. In requ	ehole terminated at 8.2 m depth TES: his drawing is to be read with the ect report and project number as tented above. Iterpretation assistance by EXP is ired before use by others.		9 10 11														

Time	Water Level (m)	Depth to Cave (m)
on completion	8.1	8.1
Nov. 20, 2020	dry	-
Nov. 23, 2020	5.51	-
Nov. 27, 2020	5.51	-

Project	No.	HAM-00802098-B0									Dra	awing	No		6
roject:		Proposed Mixed-Use Deve	elopmei	nt							5	Sheet	No.	1	of
ocatio	n:	559 Garner Road East, An	caster,	O	N										-
Date Dr Drill Typ	rilled: pe:	November 20, 2020 D50 Track. Solid Augers.			Auger Samı SPT (N) Va Dynamic Co Shelby Tubo	ble ue ne Test			 	Combu Natural Plastic Undrair % Strai	stible Va Moistur and Liq ned Tria: in at Fai	apour Re re uid Limit xial at lure	eading I	۲ ۲ ۳	⊐ × ↔
atum:		Geodelic		_	Field Vane	Fest		S	I	Penetro	ometer				
S Y M B		Soil Description	ELEV.	DEPT	20 Shear Stre	N 40	Value 60	8	0 kPa	Combus 2 Natu Atterb	stible Vap 5 ural Mois erg Limit	oour Read 50 ture Con	ding (ppm 75 tent % Weight)) S A F	
Ľ	-	SOU (150 mm thick)	248.59	Ĥ 0		100		20	0	1	0	20	30		
	FILL grav	: clayey silt, some sand, trace el, brown, moist, trace rootlets	~248.4		Ô										
	SAN brow	ID to SILTY SAND: trace clay, /n, moist, loose		1	ó										
	_		_	2	Ô										
	_wet,	very loose below 2.3 m	_	3	ð										
	_		_	C	\$										
	_		~244.0	4											
	SILT _brow	Y SAND to SILT: trace clay, wn, very moist, very dense		5					96 Ŏ						
	_		_	6											
	_ Borg	halo terminated at 6.7 m denth	~241.9				57 O								
	NOT 1. Th	ES: his drawing is to be read with the		7											
	subj pres 2. In requ	ect report and project number as ented above. terpretation assistance by EXP is irred before use by others		8											
	grey	below 7.6 m		9											
				10											
				11											
1			1	1 -			++++							± 1	

Time	Water Level (m)	Depth to Cave (m)
on completion	drý	no cave

Project No. H	IAM-00802098-B0										Drawing	g No.			7
Project: <u>F</u>	roposed Mixed-Use Deve	elopmer	nt								Shee	et No.	1	_ (of _
ocation: <u>5</u>	59 Garner Road East, An	icaster,	0	N											
	lovember 20, 2020		_	Auger S	Samp	le			\boxtimes	Combu	istible Vapour	Reading			
	NEO Trock Solid Augere		_	SPT (N) Val	ue -		0	Ø	Plastic	and Liquid Lir	nit		$\hat{}$)
Drill Type: L	Dou Track. Solid Augers.		-	Dynami Shelby	c Co Tube	ne les	st			Undraii % Stra	ned Triaxial at in at Failure		\oplus		
Datum: <u>G</u>	eodelic		_	Field Va	ane 1	est			S	Penetr	ometer				
S Y M	Soil Description	ELEV.	DEP		20	40	N Val	lue 60	80	Combus 2 Nat	stible Vapour R 25 50 ural Moisture C	eading (pp 75	om)	S A M P	Natur Unit
		m 247 74	H H	Shear	Stre	ngth 10	0		kPa 200	Atterb	oerg Limits (% [0 20	Dry Weigh 30	t)	L E S	Weig kN/m
	IL: (~50 mm thick)	~247.7	0	å											
gravel,	brown, moist, trace rootlets	~247.0												4	1
SAND t	o SILTY SAND: trace clay,		1												I
	ποιοι, σοπρασι													4	I
loose to	very loose below 1.5 m	1		ô											I
-		_	2											4	I
wet bel	ow 2.4 m	_		1											I
			'												I
		_	3	13											I
		_													I
			4												1
			Ľ												1
	SAND to SILT: trace clay.	=~243.2							80						1
grey, ve	ery moist, very dense	_	5						Õ						1
															1
															1
		-	6												1
		_							Ö						1
Boreho	le terminated at 6.7 m depth	~241.0													1
NOTES	:		7												1
1. This	drawing is to be read with the														1
present	ed above.		8												1
2. Inter	bretation assistance by EXP is														1
															1
			9												1
															1
															1
			10												I
															I
															I
			11												I
															I
													+		

Time	Water Level (m)	Depth to Cave (m)
on completion	3.2	4.6

			Lo	g of	ŀ	30	re	h	ol	e]	BH-	6					
P	roject	No.	HAM-00802098-B0	-									Draw	ing No.			8
P	roject	:	Proposed Mixed-Use Deve	elopmen	t								Sh	eet No.	1	_ (of <u>1</u>
Lo	ocatio	n:	559 Garner Road East, An	caster,	0	N											
D D D	ate D rill Ty atum:	rilled: pe:	November 17, 2020 D50 Track. Solid Augers. Geodetic		-	Auger : SPT (N Dynam Shelby Field V	Sample I) Valu ic Con Tube ane Te	e e Tes est	st	<u> </u>		Combo Natura Plastic Undra % Stra Peneti	ustible Vapo al Moisture and Liquid ined Triaxial ain at Failure rometer	ur Reading Limit ⊢ at	€)
G W L	SYMBOL		Soil Description	ELEV. m 247 17	DEPTH	Shea	20 r Streng	40 gth 10	N Valu) 0	ie 60	80 kPa 200	Combu Na Atter	stible Vapour 25 50 tural Moisture berg Limits (9 10 20	r Reading (pp 75 e Content % % Dry Weight 30	m))	SAMPLES	Natural Unit Weight kN/m ³
		FILL grav (pos SAN brow loose	SOIL: (~50 mm thick) :: clayey silt, some sand and el, brown, moist, trace rootlets sible reworked native soil) ID to SILTY SAND: trace clay, m, moist, compact e at 1.5 m	~247.1 ~246.9	1	Ö 18 Ö											
		SILT brow 	Y SAND to SILT: trace clay, wn, very moist to wet, dense	~244.9 ~244.2	3			38 O	46 Ŏ								
		 very 	dense below 4.6 m	-	4					64 O							
		 grey	below 6.1 m	~240.5	6						82 Ö						
		Bore	ehole terminated at 6.7 m depth	_^240.5	7												
GS.GPJ GINTSTD US LAB.GDT 6/30/2'		NOT 1. Tł subj pres 2. In requ	ES: his drawing is to be read with the ect report and project number as ented above. terpretation assistance by EXP is ired before use by others.		8												
					11												

 Time
 Water Level (m)
 Depth to Cave (m)

 on completion
 3.1
 4.3

 Nov. 20, 2020
 3.10

 Nov. 23, 2020
 3.05

 Nov. 27, 2020
 3.00

Appendix C – SWRT Procedures and Results

Aquifer Model: Unconfined

Solution Method: Hvorslev

K = 3.09E-7 m/sec

y0 = 5.726 m

K = 1.89E-7 m/sec

y0 = 2.67 m

K = 1.53E-7 m/sec

y0 = 1.714 m

K = 7.04E-7 m/sec

y0 = 3.336 m

*exp. Single Well Response Test Procedure

A Single Well Response Test (SWRT), also known as a bail test or a slug test, is conducted in order to determine the saturated hydraulic conductivity (K) of an aquifer. The method of the SWRT is to characterize the change of groundwater level in a well or borehole over time.

In order to ensure consistency and repeatability, all **exp** employees are to follow the procedure outlined in this document when conducting SWRTs.

The figure below depicts a schematic of a slug and bail test and the respective water level changes.

Slug Test Procedure

Equipment Required

- Copy of a signed health and safety plan
- Copy of the work program
- PPE as required by Site-Specific HASP
- Copy of the monitoring well location plan/site plan
- Waterproof pen and bound field note book
- SWRT field data Entry form
- Disposable gloves
- Duct tape
- Deionized water
- Alconox (phosphate free detergent)
- Spray bottles
- Electronic water level meter and spare batteries
- Solid PVC or stainless steel slug of known volume or clean water
- String (nylon)
- Water pressure transducer (data logger) and baro-logger
- Watch or stop watch with second hand
- Plastic sheeting

Testing Procedure

- 1. Remove cap from well and collect static water level
- 2. Remove waterra tubing/bailer and place in garbage bag. Record static water level measurement again.
- 3. Lower the slug into the well and record the dynamic water level.
- 4. Record the drawdown (for the slug test) at set five (5) second intervals for the first five (5) minutes, then reduce to every one (1) minute.
- 5. Continue recording the drawdown until 95% recovery is reached. To calculate this value: Find the difference between the dynamic water level and the static water level, then multiply by 95% (.95). Add the resulting value to the dynamic water level.
 - (Static Water Level Dynamic Water Level).95 + Static Water Level = 95% Recovery Value
- 6. Once complete, replace the waterra tubing/bailer and re-secure the well cap.

Note: If the well is deep, more than one slug may be inserted by attaching the slugs to a series.

Slugs must be washed with methanol, then lab grade soap, and then rinsed with de-ionized water after each use.

Based on the recorded observations, the hydraulic conductivity (in m/s) of the aquifer will be determined. In order to determine the hydraulic conductivity; the well diameter, radius of the borehole and length of the screen will also be required.

Bail Test Procedure

Equipment Required

- 20 L (5 gal) Graduated pail
- Stop watch or watch with seconds
- Garbage bags
- Water level meter
- Field sheets/log book
- Latex Gloves
- Bailer and Rope

Procedure

- 1. Remove cap from well and collect static water level.
- 2. If using a **bailer**:
 - a. Affix the rope to the bailer.
 - b. Remove the waterra tubing and place in garbage bag
 - c. Record static water level measurement again.
 - d. Record how much water was removed by either counting the number of full bailers or emptying removed water into a container.
 - e. Quickly lower the bailer into the well and remove.
 - f. Continue this process until the water level will reduce no further.
 - g. Record the dynamic water level.
- 3. If using waterra to bail the water:
 - a. Pump the water into graduated bucket until the water level will reduce no further.
 - b. Record how much water has been removed.
 - c. Record the dynamic water level.
- 4. Record the recovery at set five (5) second intervals for the first (5) minutes, then reduce to every one (1) minute.
- 5. Continue recording the drawdown/recovery until 95% recovery is reached.
- 6. Once complete, replace any waterra tubing that may have been removed from the well and re-secure the well cap.

Appendix D – Laboratory's Certificates of Analysis

Your P.O. #: ENV-BRM Your Project #: HAM-00802096 Site Location: 559 GARNER RD Your C.O.C. #: 831568-03-01

Attention: Francois Chartier

exp Services Inc 1595 Clark Blvd Brampton, ON CANADA L6T 4V1

> Report Date: 2021/07/08 Report #: R6710457 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1I3150 Received: 2021/07/02, 15:41

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Sewer Use By-Law Semivolatile Organics	1	2021/07/04	2021/07/05	CAM SOP 00301	EPA 8270 m
Carbonaceous BOD	1	2021/07/03	2021/07/08	CAM SOP-00427	SM 23 5210B m
Chloride by Automated Colourimetry	1	N/A	2021/07/06	CAM SOP-00463	SM 23 4500-Cl E m
Total Cyanide	1	2021/07/05	2021/07/05	CAM SOP-00457	OMOE E3015 5 m
Fluoride	1	2021/07/03	2021/07/06	CAM SOP-00449	SM 23 4500-F C m
Mercury in Water by CVAA	1	2021/07/06	2021/07/06	CAM SOP-00453	EPA 7470A m
Total Metals Analysis by Axial ICP	1	2021/07/06	2021/07/06	CAM SOP-00408	EPA 6010D m
E.coli, (CFU/100mL)	1	N/A	2021/07/02	CAM SOP-00552	MOE LSB E3371
Animal and Vegetable Oil and Grease	1	N/A	2021/07/08	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2021/07/07	2021/07/07	CAM SOP-00326	EPA1664B m,SM5520B m
OC Pesticides (Selected) & PCB (1)	1	2021/07/06	2021/07/07	CAM SOP-00307	EPA 8081A/8082B m
OC Pesticides Summed Parameters	1	N/A	2021/07/03	CAM SOP-00307	EPA 8081A/8082B m
рН	1	2021/07/03	2021/07/06	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2021/07/05	CAM SOP-00444	OMOE E3179 m
Sulphate by Automated Colourimetry	1	N/A	2021/07/06	CAM SOP-00464	EPA 375.4 m
Total Kjeldahl Nitrogen in Water	1	2021/07/05	2021/07/06	CAM SOP-00938	OMOE E3516 m
Total PAHs (Hamilton, Ottawa S.U.B.) (2)	1	N/A	2021/07/06	CAM SOP - 00301	
Mineral/Synthetic O & G (TPH Heavy Oil) (3)	1	2021/07/07	2021/07/07	CAM SOP-00326	EPA1664B m,SM5520F m
Total Suspended Solids	1	2021/07/07	2021/07/07	CAM SOP-00428	SM 23 2540D m
Volatile Organic Compounds in Water	1	N/A	2021/07/06	CAM SOP-00228	EPA 8260C m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or

Page 1 of 16

Your P.O. #: ENV-BRM Your Project #: HAM-00802096 Site Location: 559 GARNER RD Your C.O.C. #: 831568-03-01

Attention: Francois Chartier

exp Services Inc 1595 Clark Blvd Brampton, ON CANADA L6T 4V1

> Report Date: 2021/07/08 Report #: R6710457 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1I3150 Received: 2021/07/02, 15:41

implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Chlordane (Total) = Alpha Chlordane + Gamma Chlordane

(2) Total PAHs include only those PAHs specified in the sewer use by-by-law.

(3) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Patricia Legette, Project Manager Email: Patricia.Legette@bureauveritas.com Phone# (905)817-5799

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

HAMILTON SANITARY & STORM SEWER (14-090)

BV Labs ID				PZN965			PZN965			
Sampling Date				2021/07/02			2021/07/02			
				12:50			12:50			
COC Number				831568-03-01			831568-03-01			
	UNITS	Criteria	Criteria-2	BH 1-2021	RDL	QC Batch	BH 1-2021 Lab-Dup	RDL	QC Batch	
Calculated Parameters										
Total Animal/Vegetable Oil and Grease	mg/L	150	10	ND	0.50	7441312				
Inorganics										
Total Carbonaceous BOD	mg/L	300	-	ND	2	7442647	ND	2	7442647	
Fluoride (F-)	mg/L	10	-	0.26	0.10	7443075				
Total Kjeldahl Nitrogen (TKN)	mg/L	100	-	0.36	0.10	7444664				
рН	рН	5.5:9.5	5.5:9.5	7.99		7443099				
Phenols-4AAP	mg/L	1	0.02	ND	0.0010	7443524				
Total Suspended Solids	mg/L	350	15	47	10	7447498	46	10	7447498	
Dissolved Sulphate (SO4)	mg/L	1500	-	54	1.0	7444360	55	1.0	7444360	
Total Cyanide (CN)	mg/L	2	-	ND	0.0050	7444633				
Dissolved Chloride (Cl-)	mg/L	1500	-	200	2.0	7444363	200	2.0	7444363	
Petroleum Hydrocarbons										
Total Oil & Grease	mg/L	-	-	ND	0.50	7450053				
Total Oil & Grease Mineral/Synthetic	mg/L	15	-	ND	0.50	7450056				
Metals										
Total Aluminum (Al)	mg/L	50	-	1.0	0.1	7445560				
Total Antimony (Sb)	mg/L	5	-	ND	0.02	7445560				
Total Arsenic (As)	mg/L	1	-	ND	0.01	7445560				
Total Bismuth (Bi)	mg/L	5	-	ND	0.05	7445560				
Total Cadmium (Cd)	mg/L	0.7	1	ND	0.002	7445560				
Total Chromium (Cr)	mg/L	5	1	ND	0.01	7445560				
Total Cobalt (Co)	mg/L	5	-	ND	0.002	7445560				
Total Copper (Cu)	mg/L	2	1	ND	0.01	7445560				
Total Iron (Fe)	mg/L	50	-	1.9	0.02	7445560				
No Fill No Exceedance	!									
Grey Exceeds 1 criter	ria policy/leve	el								
Black Exceeds both cr	riteria/levels									
RDL = Reportable Detection Limit	RDL = Reportable Detection Limit									
QC Batch = Quality Control Batch										
Lab-Dup = Laboratory Initiated Duplicate										
Criteria: City of Hamilton Sanitary and co	mbined Sewe	er Dischar	ge By Law N	No. 14-090 Apr	il 23, 201	4				
Criteria-2: City of Hamilton Storm Discharge By Law No. 14-090 April 23, 2014										

ND = Not detected

Page 3 of 16

HAMILTON SANITARY & STORM SEWER (14-090)

BV Labs ID					PZN965			PZN965		
Sampling Date					2021/07/02 12:50			2021/07/02 12:50		
COC Number					831568-03-01			831568-03-01		
		UNITS	Criteria	Criteria-2	BH 1-2021	RDL	QC Batch	BH 1-2021 Lab-Dup	RDL	QC Batch
Total Lead (Pb)		mg/L	2	1	ND	0.01	7445560			
Total Manganese (Mn)		mg/L	5	-	0.41	0.41 0.001 74				
Mercury (Hg)		mg/L	0.01	-	ND	0.00010	7445792			
Total Molybdenum (Mo)	mg/L	1	-	0.005	0.005	7445560			
Total Nickel (Ni)		mg/L	2	1	ND	0.005	7445560			
Total Phosphorus (P)		mg/L	10	-	0.07	0.05	7445560			
Total Selenium (Se)		mg/L	1	-	ND	0.02	7445560			
Total Silver (Ag)		mg/L	5	-	ND	0.01	7445560			
Total Tin (Sn)		mg/L	5	-	ND	0.02	7445560			
Total Titanium (Ti)		mg/L	5	-	0.023	0.005	7445560			
Total Vanadium (V)		mg/L	5	-	ND	0.005	7445560			
Total Zinc (Zn)		mg/L	3	3	0.006	0.005	7445560			
Semivolatile Organics										
Di-N-butyl phthalate		ug/L	80	-	ND	2	7443256			
Bis(2-ethylhexyl)phthala	ate	ug/L	12	-	ND	2	7443256			
3,3'-Dichlorobenzidine		ug/L	2	-	ND	0.8	7443256			
Pentachlorophenol		ug/L	5	-	ND	1	7443256			
Phenanthrene		ug/L	-	-	ND	0.2	7443256			
Anthracene		ug/L	-	-	ND	0.2	7443256			
Fluoranthene		ug/L	-	-	ND	0.2	7443256			
Pyrene		ug/L	-	-	ND	0.2	7443256			
Benzo(a)anthracene		ug/L	-	-	ND	0.2	7443256			
Chrysene		ug/L	-	-	ND	0.2	7443256			
Benzo(b/j)fluoranthene		ug/L	-	-	ND	0.2	7443256			
Benzo(k)fluoranthene		ug/L	-	-	ND	0.2	7443256			
No Fill	No Exceedance				•					<u>.</u>
Grey	Exceeds 1 crite	ria policy/leve	el							
Black Exceeds both o		riteria/levels								
RDL = Reportable Detection Limit										

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: City of Hamilton Sanitary and combined Sewer Discharge By Law No. 14-090 April 23, 2014

Criteria-2: City of Hamilton Storm Discharge By Law No. 14-090

April 23, 2014

ND = Not detected

Page 4 of 16

HAMILTON SANITARY & STORM SEWER (14-090)

BV Labs ID	V Labs ID				PZN965			PZN965		
Sampling Date					2021/07/02 12:50			2021/07/02 12:50		
COC Number					831568-03-01			831568-03-01		
		UNITS	Criteria	Criteria-2	BH 1-2021	RDL	QC Batch	BH 1-2021 Lab-Dup	RDL	QC Batch
Benzo(a)pyrene		ug/L	-	-	ND	0.2	7443256			
Indeno(1,2,3-cd)pyrene		ug/L	-	-	ND	0.2	7443256			
Dibenzo(a,h)anthracene	9	ug/L	-	-	ND	0.2	7443256			
Benzo(g,h,i)perylene		ug/L	-	-	ND	0.2	7443256			
Dibenzo(a,i)pyrene		ug/L	-	-	ND	0.2	7443256			
Benzo(e)pyrene		ug/L	-	-	ND	0.2	7443256			
Perylene		ug/L	-	-	ND	0.2	7443256			
Dibenzo(a,j) acridine		ug/L	-	-	ND	0.4	7443256			
7H-Dibenzo(c,g) Carbaz	ole	ug/L	-	-	ND	0.4	7443256			
Calculated Parameters			•	•	•			•	•	μ
Total PAHs (18 PAHs)		ug/L	5	-	ND	0.96	7442428			
Volatile Organics			·		•			•		
Benzene		ug/L	10	-	ND	0.40	7443815			
Chloroform		ug/L	40	-	ND	0.40	7443815			
1,2-Dichlorobenzene		ug/L	50	-	ND	0.80	7443815			
1,4-Dichlorobenzene		ug/L	80	-	ND	0.80	7443815			
cis-1,2-Dichloroethylen	e	ug/L	4000	-	ND	1.0	7443815			
trans-1,3-Dichloroprope	ene	ug/L	140	-	ND	0.80	7443815			
Ethylbenzene		ug/L	160	-	ND	0.40	7443815			
Methylene Chloride(Dic	hloromethane)	ug/L	2000	-	ND	4.0	7443815			
1,1,2,2-Tetrachloroetha	ine	ug/L	1400	-	ND	0.80	7443815			
Tetrachloroethylene		ug/L	1000	-	ND	0.40	7443815			
Toluene		ug/L	16	-	ND	0.40	7443815			
Trichloroethylene		ug/L	400	-	ND	0.40	7443815			
p+m-Xylene		ug/L	-	-	ND	0.40	7443815			
No Fill No Exceedanc		!								
Grey Exceeds 1 criteria policy/level										
Black	riteria/levels									
RDL = Reportable Detection Limit										

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: City of Hamilton Sanitary and combined Sewer Discharge By Law No. 14-090 April 23, 2014

Criteria-2: City of Hamilton Storm Discharge By Law No. 14-090

April 23, 2014

ND = Not detected

Page 5 of 16

HAMILTON SANITARY & STORM SEWER (14-090)

BV Labs ID					PZN965			PZN965		
Sampling Date					2021/07/02 12:50			2021/07/02 12:50		
COC Number					831568-03-01			831568-03-01		
		UNITS	Criteria	Criteria-2	BH 1-2021	RDL	QC Batch	BH 1-2021 Lab-Dup	RDL	QC Batch
o-Xylene		ug/L	-	-	ND	0.40	7443815			
Total Xylenes		ug/L	1400	-	ND	0.40	7443815			
Pesticides & Herbicides		•					•			
Aldrin		ug/L	-	-	ND 0.005		7445553			
Dieldrin		ug/L	-	-	ND 0.005 7445553					
a-Chlordane		ug/L	-	-	ND	0.005	7445553			
g-Chlordane		ug/L	-	-	ND	0.005	7445553			
o,p-DDT		ug/L	-	-	ND	0.005	7445553			
p,p-DDT		ug/L	-	-	ND	0.005	7445553			
Lindane		ug/L	100	-	ND	0.003	7445553			
Hexachlorobenzene		ug/L	0.1	-	ND	0.005	7445553			
Mirex		ug/L	100	-	ND	0.005	7445553			
Microbiological		•					•			
Escherichia coli		CFU/100mL	-	2400	10	10	7442507			
Surrogate Recovery (%))	•					•			
2,4,6-Tribromophenol		%	-	-	94		7443256			
2-Fluorobiphenyl		%	-	-	69		7443256			
D14-Terphenyl (FS)		%	-	-	89		7443256			
D5-Nitrobenzene		%	-	-	74		7443256			
D8-Acenaphthylene		%	-	-	78		7443256			
2,4,5,6-Tetrachloro-m-x	ylene	%	-	-	78		7445553			
Decachlorobiphenyl		%	-	-	81		7445553			
4-Bromofluorobenzene		%	-	-	91		7443815			
D4-1,2-Dichloroethane		%	-	-	117		7443815			
D8-Toluene		%	-	-	88		7443815			
No Fill	No Exceedance	2								
Grey	Exceeds 1 crite	ria policy/leve	el							
Black	Exceeds both c	riteria/levels								
RDL = Reportable Detec	RDL = Reportable Detection Limit									
QC Batch = Quality Cont	trol Batch									
Lab-Dup = Laboratory Ir	nitiated Duplicate	2								
Criteria: City of Hamilto	n Sanitary and co	mbined Sewe	r Dischar	ge By Law I	No. 14-090 Apr	il 23 <i>,</i> 201	4			
Criteria-2: City of Hamil April 23, 2014	ton Storm Discha	rge By Law No	o. 14-090							
ND = Not detected										

Page 6 of 16

ORGANOCHLORINATED PESTICIDES BY GC-ECD (WATER)

BV Labs ID				PZN965		
Sampling Date				2021/07/02		
				12:50		
COC Number				831568-03-01		
		UNITS	Criteria	BH 1-2021	RDL	QC Batch
Calculated Pa	rameters					
Aldrin + Dieldı	in	ug/L	0.2	ND	0.005	7441019
Chlordane (To	tal)	ug/L	100	ND	0.005	7441019
DDT+ Metabolites		ug/L	-	ND	0.005	7441019
Heptachlor + Heptachlor epoxide		ug/L	-	ND	0.005	7441019
o,p-DDD + p,p	-DDD	ug/L	-	ND	0.005	7441019
o,p-DDE + p,p-	-DDE	ug/L	-	ND	0.005	7441019
o,p-DDT + p,p	-DDT	ug/L	0.1	ND	0.005	7441019
Total Endosulf	an	ug/L	-	ND	0.005	7441019
Total PCB		ug/L	1	ND	0.05	7441019
No Fill	No Exceedance					
Grey	Exceeds 1 criteria	policy/le	evel			
Black	Exceeds both crite	ria/leve	ls			
RDL = Reporta	ble Detection Limit					
QC Batch = Qu	ality Control Batch					
Criteria: City o	f Hamilton Sanitary a	and com	ibined Sev	wer Discharge B	y Law N	No. 14-090
April 23, 2014						
ND = Not dete	ected					

TEST SUMMARY

BV Labs ID:	PZN965
Sample ID:	BH 1-2021
Matrix:	Water

Collected: 2021/07/02 Shipped: Received: 2021/07/02

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Sewer Use By-Law Semivolatile Organics	GC/MS	7443256	2021/07/04	2021/07/05	Milijana Avramovic
Carbonaceous BOD	DO	7442647	2021/07/03	2021/07/08	Surleen Kaur Romana
Chloride by Automated Colourimetry	KONE	7444363	N/A	2021/07/06	Alina Dobreanu
Total Cyanide	SKAL/CN	7444633	2021/07/05	2021/07/05	Aditiben Patel
Fluoride	ISE	7443075	2021/07/03	2021/07/06	Surinder Rai
Mercury in Water by CVAA	CV/AA	7445792	2021/07/06	2021/07/06	Gagandeep Rai
Total Metals Analysis by Axial ICP	ICPX	7445560	2021/07/06	2021/07/06	Jolly John
E.coli, (CFU/100mL)	PL	7442507	N/A	2021/07/02	Soham Patel
Animal and Vegetable Oil and Grease	BAL	7441312	N/A	2021/07/08	Automated Statchk
Total Oil and Grease	BAL	7450053	2021/07/07	2021/07/07	Karamjeet Randhawa
OC Pesticides (Selected) & PCB	GC/ECD	7445553	2021/07/06	2021/07/07	Li Peng
OC Pesticides Summed Parameters	CALC	7441019	N/A	2021/07/03	Automated Statchk
рН	AT	7443099	2021/07/03	2021/07/06	Surinder Rai
Phenols (4AAP)	TECH/PHEN	7443524	N/A	2021/07/05	Deonarine Ramnarine
Sulphate by Automated Colourimetry	KONE	7444360	N/A	2021/07/06	Alina Dobreanu
Total Kjeldahl Nitrogen in Water	SKAL	7444664	2021/07/05	2021/07/06	Rajni Tyagi
Total PAHs (Hamilton, Ottawa S.U.B.)	CALC	7442428	N/A	2021/07/06	Automated Statchk
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	7450056	2021/07/07	2021/07/07	Karamjeet Randhawa
Total Suspended Solids	BAL	7447498	2021/07/07	2021/07/07	Sandeep Kaur
Volatile Organic Compounds in Water	GC/MS	7443815	N/A	2021/07/06	Chandni Khawas

BV Labs ID: Sample ID: Matrix:	PZN965 Dup BH 1-2021 Water					Collected: Shipped: Received:	2021/07/02 2021/07/02	
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst		
Carbonaceous BOD		DO	7442647	2021/07/03	2021/07/08	Surleen Ka	iur Romana	
Chloride by Automated Co	olourimetry	KONE	7444363	N/A	2021/07/06	Alina Dobr	reanu	
Sulphate by Automated C	Colourimetry	KONE	7444360	N/A	2021/07/06	Alina Dobr	reanu	
Total Suspended Solids		BAL	7447498	2021/07/07	2021/07/07	Sandeep K	aur	

GENERAL COMMENTS

Each te	mperature is the ave	erage of up to thi	ree cooler temperatures taken at receipt									
]	Package 1	6.7°C]									
Sample	Gample PZN965 [BH 1-2021] : VOC Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.											
Results	Results relate only to the items tested.											

QUALITY ASSURANCE REPORT

exp Services Inc Client Project #: HAM-00802096 Site Location: 559 GARNER RD Your P.O. #: ENV-BRM Sampler Initials: EC

			Matrix	Spike	SPIKED	BLANK	Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7443256	2,4,6-Tribromophenol	2021/07/05	102	10 - 130	91	10 - 130	89	%				
7443256	2-Fluorobiphenyl	2021/07/05	84	30 - 130	81	30 - 130	72	%				
7443256	D14-Terphenyl (FS)	2021/07/05	88	30 - 130	89	30 - 130	86	%				
7443256	D5-Nitrobenzene	2021/07/05	85	30 - 130	78	30 - 130	74	%				
7443256	D8-Acenaphthylene	2021/07/05	88	30 - 130	79	30 - 130	78	%				
7443815	4-Bromofluorobenzene	2021/07/06	104	70 - 130	106	70 - 130	96	%				
7443815	D4-1,2-Dichloroethane	2021/07/06	108	70 - 130	105	70 - 130	116	%				
7443815	D8-Toluene	2021/07/06	104	70 - 130	107	70 - 130	87	%				
7445553	2,4,5,6-Tetrachloro-m-xylene	2021/07/07	85	50 - 130	79	50 - 130	72	%				
7445553	Decachlorobiphenyl	2021/07/07	87	50 - 130	92	50 - 130	82	%				
7442647	Total Carbonaceous BOD	2021/07/08					ND,RDL=2	mg/L	NC	30	96	85 - 115
7443075	Fluoride (F-)	2021/07/06	63 (1)	80 - 120	95	80 - 120	ND, RDL=0.10	mg/L	3.3	20		
7443099	рН	2021/07/06			102	98 - 103			0.093	N/A		
7443256	3,3'-Dichlorobenzidine	2021/07/05	91	30 - 130	98	30 - 130	ND, RDL=0.8	ug/L				
7443256	7H-Dibenzo(c,g) Carbazole	2021/07/05	125	30 - 130	104	30 - 130	ND, RDL=0.4	ug/L	NC	40		
7443256	Anthracene	2021/07/05	112	30 - 130	110	30 - 130	ND, RDL=0.2	ug/L	NC	40		
7443256	Benzo(a)anthracene	2021/07/05	113	30 - 130	111	30 - 130	ND, RDL=0.2	ug/L	NC	40		
7443256	Benzo(a)pyrene	2021/07/05	117	30 - 130	120	30 - 130	ND, RDL=0.2	ug/L	NC	40		
7443256	Benzo(b/j)fluoranthene	2021/07/05	121	30 - 130	121	30 - 130	ND, RDL=0.2	ug/L	NC	40		
7443256	Benzo(e)pyrene	2021/07/05	112	30 - 130	112	30 - 130	ND, RDL=0.2	ug/L	NC	40		
7443256	Benzo(g,h,i)perylene	2021/07/05	125	30 - 130	126	30 - 130	ND, RDL=0.2	ug/L	NC	40		
7443256	Benzo(k)fluoranthene	2021/07/05	113	30 - 130	112	30 - 130	ND, RDL=0.2	ug/L	NC	40		
7443256	Bis(2-ethylhexyl)phthalate	2021/07/05	94	30 - 130	95	30 - 130	ND,RDL=2	ug/L				
7443256	Chrysene	2021/07/05	123	30 - 130	127	30 - 130	ND, RDL=0.2	ug/L	NC	40		
7443256	Dibenzo(a,h)anthracene	2021/07/05	130	30 - 130	117	30 - 130	ND, RDL=0.2	ug/L	NC	40		
7443256	Dibenzo(a,i)pyrene	2021/07/05	117	30 - 130	114	30 - 130	ND, RDL=0.2	ug/L	NC	40		
7443256	Dibenzo(a,j) acridine	2021/07/05	122	30 - 130	101	30 - 130	ND, RDL=0.4	ug/L	NC	40		
7443256	Di-N-butyl phthalate	2021/07/05	105	30 - 130	101	30 - 130	ND,RDL=2	ug/L				
7443256	Fluoranthene	2021/07/05	125	30 - 130	125	30 - 130	ND, RDL=0.2	ug/L	NC	40		
7443256	Indeno(1,2,3-cd)pyrene	2021/07/05	124	30 - 130	118	30 - 130	ND, RDL=0.2	ug/L	NC	40		

Page 10 of 16

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: HAM-00802096 Site Location: 559 GARNER RD Your P.O. #: ENV-BRM Sampler Initials: EC

			Matrix	Spike	SPIKED	BLANK	Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7443256	Pentachlorophenol	2021/07/05	71	30 - 130	43	30 - 130	ND,RDL=1	ug/L				
7443256	Perylene	2021/07/05	108	30 - 130	90	30 - 130	ND, RDL=0.2	ug/L	NC	40		
7443256	Phenanthrene	2021/07/05	120	30 - 130	118	30 - 130	ND, RDL=0.2	ug/L	NC	40		
7443256	Pyrene	2021/07/05	125	30 - 130	125	30 - 130	ND, RDL=0.2	ug/L	NC	40		
7443524	Phenols-4AAP	2021/07/05	102	80 - 120	99	80 - 120	ND, RDL=0.0010	mg/L	1.1	20		
7443815	1,1,2,2-Tetrachloroethane	2021/07/06	96	70 - 130	93	70 - 130	ND, RDL=0.40	ug/L	NC	30		
7443815	1,2-Dichlorobenzene	2021/07/06	92	70 - 130	91	70 - 130	ND, RDL=0.40	ug/L	NC	30		
7443815	1,4-Dichlorobenzene	2021/07/06	105	70 - 130	107	70 - 130	ND, RDL=0.40	ug/L	NC	30		
7443815	Benzene	2021/07/06	90	70 - 130	89	70 - 130	ND, RDL=0.20	ug/L	5.4	30		
7443815	Chloroform	2021/07/06	96	70 - 130	96	70 - 130	ND, RDL=0.20	ug/L	NC	30		
7443815	cis-1,2-Dichloroethylene	2021/07/06	105	70 - 130	99	70 - 130	ND, RDL=0.50	ug/L	0.11	30		
7443815	Ethylbenzene	2021/07/06	86	70 - 130	83	70 - 130	ND, RDL=0.20	ug/L	1.9	30		
7443815	Methylene Chloride(Dichloromethane)	2021/07/06	96	70 - 130	95	70 - 130	ND, RDL=2.0	ug/L	NC	30		
7443815	o-Xylene	2021/07/06	NC	70 - 130	87	70 - 130	ND, RDL=0.20	ug/L	2.6	30		
7443815	p+m-Xylene	2021/07/06	NC	70 - 130	70 (2)	70 - 130	ND, RDL=0.20	ug/L	3.5	30		
7443815	Tetrachloroethylene	2021/07/06	89	70 - 130	92	70 - 130	ND, RDL=0.20	ug/L	NC	30		
7443815	Toluene	2021/07/06	NC	70 - 130	93	70 - 130	ND, RDL=0.20	ug/L	2.2	30		
7443815	Total Xylenes	2021/07/06					ND, RDL=0.20	ug/L	3.2	30		
7443815	trans-1,3-Dichloropropene	2021/07/06	114	70 - 130	98	70 - 130	ND, RDL=0.40	ug/L	NC	30		
7443815	Trichloroethylene	2021/07/06	99	70 - 130	101	70 - 130	ND, RDL=0.20	ug/L	0.73	30		
7444360	Dissolved Sulphate (SO4)	2021/07/06	NC	75 - 125	105	80 - 120	ND, RDL=1.0	mg/L	1.6	20		
7444363	Dissolved Chloride (Cl-)	2021/07/06	NC	80 - 120	100	80 - 120	ND, RDL=1.0	mg/L	0.64	20		
7444633	Total Cyanide (CN)	2021/07/05	88	80 - 120	91	80 - 120	ND, RDL=0.0050	mg/L	NC	20		
7444664	Total Kjeldahl Nitrogen (TKN)	2021/07/06	105	80 - 120	104	80 - 120	ND, RDL=0.10	mg/L	14	20	105	80 - 120
7445553	a-Chlordane	2021/07/07	81	50 - 130	85	50 - 130	ND, RDL=0.005	ug/L	NC	30		
7445553	Aldrin	2021/07/07	74	50 - 130	78	50 - 130	ND, RDL=0.005	ug/L	NC	30		

Page 11 of 16

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: HAM-00802096 Site Location: 559 GARNER RD Your P.O. #: ENV-BRM Sampler Initials: EC

			Matrix	Matrix Spike		SPIKED BLANK		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits	
7445553	Dieldrin	2021/07/07	92	50 - 130	96	50 - 130	ND, RDL=0.005	ug/L	NC	30			
7445553	g-Chlordane	2021/07/07	81	50 - 130	84	50 - 130	ND, RDL=0.005	ug/L	NC	30			
7445553	Hexachlorobenzene	2021/07/07	82	50 - 130	83	50 - 130	ND, RDL=0.005	ug/L	NC	30			
7445553	Lindane	2021/07/07	85	50 - 130	87	50 - 130	ND, RDL=0.003	ug/L	NC	30			
7445553	Mirex	2021/07/07	77	30 - 130	81	30 - 130	ND, RDL=0.005	ug/L	13	40			
7445553	o,p-DDT	2021/07/07	80	50 - 130	83	50 - 130	ND, RDL=0.005	ug/L	NC	30			
7445553	p,p-DDT	2021/07/07	88	50 - 130	84	50 - 130	ND, RDL=0.005	ug/L	NC	30			
7445560	Total Aluminum (Al)	2021/07/06	NC	80 - 120	98	80 - 120	ND, RDL=0.1	mg/L					
7445560	Total Antimony (Sb)	2021/07/06	107	80 - 120	105	80 - 120	ND, RDL=0.02	mg/L					
7445560	Total Arsenic (As)	2021/07/06	108	80 - 120	100	80 - 120	ND, RDL=0.01	mg/L					
7445560	Total Bismuth (Bi)	2021/07/06	99	80 - 120	99	80 - 120	ND, RDL=0.05	mg/L					
7445560	Total Cadmium (Cd)	2021/07/06	105	80 - 120	101	80 - 120	ND, RDL=0.002	mg/L					
7445560	Total Chromium (Cr)	2021/07/06	100	80 - 120	100	80 - 120	ND, RDL=0.01	mg/L					
7445560	Total Cobalt (Co)	2021/07/06	98	80 - 120	100	80 - 120	ND, RDL=0.002	mg/L					
7445560	Total Copper (Cu)	2021/07/06	97	80 - 120	97	80 - 120	ND, RDL=0.01	mg/L					
7445560	Total Iron (Fe)	2021/07/06	97	80 - 120	102	80 - 120	ND, RDL=0.02	mg/L					
7445560	Total Lead (Pb)	2021/07/06	95	80 - 120	100	80 - 120	ND, RDL=0.01	mg/L					
7445560	Total Manganese (Mn)	2021/07/06	96	80 - 120	97	80 - 120	ND, RDL=0.001	mg/L					
7445560	Total Molybdenum (Mo)	2021/07/06	102	80 - 120	102	80 - 120	ND, RDL=0.005	mg/L					
7445560	Total Nickel (Ni)	2021/07/06	100	80 - 120	102	80 - 120	ND, RDL=0.005	mg/L					

Page 12 of 16

QUALITY ASSURANCE REPORT(CONT'D)

exp Services Inc Client Project #: HAM-00802096 Site Location: 559 GARNER RD Your P.O. #: ENV-BRM Sampler Initials: EC

			Matrix Spike		SPIKED BLANK		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7445560	Total Phosphorus (P)	2021/07/06	NC	80 - 120	111	80 - 120	ND, RDL=0.05	mg/L	1.1	20		
7445560	Total Selenium (Se)	2021/07/06	114	80 - 120	99	80 - 120	ND, RDL=0.02	mg/L				
7445560	Total Silver (Ag)	2021/07/06	98	80 - 120	99	80 - 120	ND, RDL=0.01	mg/L				
7445560	Total Tin (Sn)	2021/07/06	101	80 - 120	104	80 - 120	ND, RDL=0.02	mg/L				
7445560	Total Titanium (Ti)	2021/07/06	102	80 - 120	101	80 - 120	ND, RDL=0.005	mg/L				
7445560	Total Vanadium (V)	2021/07/06	102	80 - 120	100	80 - 120	ND, RDL=0.005	mg/L				
7445560	Total Zinc (Zn)	2021/07/06	106	80 - 120	104	80 - 120	ND, RDL=0.005	mg/L				
7445792	Mercury (Hg)	2021/07/06	97	75 - 125	99	80 - 120	ND, RDL=0.00010	mg/L	NC	20		
7447498	Total Suspended Solids	2021/07/07					ND, RDL=10	mg/L	2.2	25	96	85 - 115
7450053	Total Oil & Grease	2021/07/07			96	85 - 115	ND, RDL=0.50	mg/L	1.0	25		
7450056	Total Oil & Grease Mineral/Synthetic	2021/07/07			94	85 - 115	ND, RDL=0.50	mg/L	3.1	25		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

(2) The recovery was below the lower control limit. This may represent a low bias in some results for this specific analyte.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Scheim N Patel

Soham Patel, Analyst 2

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

ERITAS	NVOICE TO:			REPOR	T TO:						PROJECT	T INFORMAT	ION:		∎		
any Name: #30554 exp Se ion: Central Services 1595 Clark Blvd Brampton ON L	ervices Inc 5 6T 4V1	Company Attention Address:	Name: EX Fra Edu	ncois.	es inc Auerti	×@	tap	, cer	Quotation P.O. # Project: Project Na	#.	89171 GNV ALL 2 SS9	7 - BR M 10064144 Garns	to H er R	AM - 008	502095 M3	CTIDISU K ENV_1259	r#: 831568 Project Manager
(905) 793-9800 AP@exp.com; H	Fax: (905) 793-064 (aren.Burke@exp.com	Tel:			Fax _				Site #: Sampled E	By:	30	2/				C#831568-03-01	Patricia Legette
MOE REGULATED DRINKIN SUBMITTED Regulation 153 (2011) ble 1 Res/Park Medic ble 2 Ind/Comm Coars ble 3 Agri/Other For R	IG WATER OR WATER INTENDED ON THE BV LABS DRINKING WA Other Regulati Im/Fine CCME Sanitary Seve Isc MISA Municipality Other Reg 406 Tr Other	D FOR HUMAN C TER CHAIN OF C ons wer Bylaw r Bylaw Hann Hon able	ONSUMPTION I CUSTODY Special In:	MUST BE	I Filtered (please circle): Metals / Hg / Cr VI	and Grease		ical Oxygen Demand (BOD)	ALYSIS RE spiloS papuads	osphorus (Colourimetric)	itter contrined a	E SPECIFIC)			Regular (S (will be applie Standard TA' Please note: days - contac Job Specifi Date Require	Turnaround Time (TAT) R Please provide advance notice for tandard) TAT: d if Rush TAT is not specified): = 5-7 Working days for most tests. Standard TAT for certain feets such as B your Project Manager for details. Rush TAT (if applies to entire subn stTm stops humber.	equired: Ir rush projects OD and Dioxins/Furans are Itssion) Ie Required:
Include Criter	ia on Certificate of Analysis (Y/N)?	Ves Data Sampled	Time Sampled	Matrix	- Leid	otal Oil	I	liocham	otal Su	otal Ph	Heur				# of Bottles	(c Comm	all lab for #) ents
	BH 1-2021	12/07/02	12:50	. GW			-								19		
					4												
1													-				
					2.40												
6		1															
	3	1			111												
			. 0									1.02					
* RELINQUISHED BY:	(Signature/Print) Date: (1) Folwin (w-752) 21/07	(V/MM/DD) T /07 3:1	10 62l	A RECEIVED	P Me	wint)	2	v M	MM/DD) MUZ	15	Time 5:41	- not subr	ed and nitted	Time Sensitive	Temperat	ure PC) on Recei Custody Se Present Intact	al Yes

Exceedance Summary Table – Hamilton Sanitary & comb.

Result Exceedances

Sample ID	BV Labs ID	Parameter	Criteria	Result	DL	UNITS			
No Exceedances									
The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to									
applicable regulatory gu	idelines.								

Exceedance Summary Table – Hamilton Storm

Result Exceedances

Sample ID	BV Labs ID	Parameter	Criteria	Result	DL	UNITS			
BH 1-2021	PZN965-06-Lab Dup	Total Suspended Solids	15	46	10	mg/L			
BH 1-2021	PZN965-06	Total Suspended Solids	15	47	10	mg/L			
The exceedance summary table is for information purposes only and should not be considered a comprehensive listing or statement of conformance to									
applicable regulatory guidelines.									

Appendix E – Construction and Post-Construction Flow Rate Calculations

APPENDIX E: Short-Term Flow Rate

559 Garner Road East, Ancaster, Ontario HAM-00802098-A0

Table E-1: Flow from Under-Slab Drain System

Parameters	Symbols	Unit	Value
Geological Formation	-	-	Glacial Deposit
Ground Elevation	-	mASL	248.24
Lowest Top Slab Elevation	-	mASL	242.24
Highest Groundwater Elevation	-	mASL	246.35
Lowest Footing Elevation	-	mASL	240.74
Base of the Water-Bearing Zone	-	mASL	213.40
Height of Static Water Table Above the Base of the Water-Bearing Zone	Н	m	32.95
Dewatering Target Elevation	-	mASL	239.74
Height of Target Water Level Above the Base of Water-Bearing Zone	h _w	m	26.34
Hydraulic Conductivity	K	m/s	7.0E-07
Length of Excavation	-	m	52.00
Width of Excavation	-	m	72.00
Equivalent Radius (equivalent perimeter)	r _e	m	39.47
Method to Calculate Radius of Influence	-	-	Cooper-Jacob
Time (30 days)	t	s	2592000
Specific Yield	Sy		0.10
Cooper-Jacob's Radius of Influence from Sides of Excavation	Rcj	m	36.68
Radius of Influence	Ro	m	76.15
Dewatering Flow Rate (unconfined radial flow component)	Q	m ³ /day	113.32
Factor of Safety	fs	-	2.00
Dewatering Flow Rate (multiplied by factor of safety)	Q.fs	m ³ /day	227
Precipitation Event	-	mm/day	15
Volume from Precipitation	-	m³/day	56
Dewatering Flow Rate With Safety Factor (excluding stormwater collection)		m³/day	227
Dewatering Flow Rate With Safety Factor (including stormwater collection)	-	m³/day	283

Notes:

mASL - meters above sea level

Analytical Solution for Estimating Radial Flow from an Unconfined Aquifer to a Fully-Penetrating Excavation

$$Q_w = \frac{\pi K (H^2 - h^2)}{Ln \left[\frac{R_o}{r_e}\right]}$$
$$r_e = \frac{a+b}{\pi} \qquad R_o = R_{cj} + r_e$$

(Based on the Dupuit-Forcheimer Equation)

$$R_{cj} = \sqrt{2.25KDt/S}$$

Where:

 Q_w = Flow rate per unit length of excavation (m³/s)

K = Hydraulic conductivity (m/s)

H = Height of static water table above base of water-bearing zone (m)

 h_w = Height of target water level above the base of water-bearing zone (m)

Rcj=Cooper Jacob Radius of Influence (m)

 R_o =Radius of influence (m)

re=Equivalent perimeter (m)