Scott Beedie BURPI

117 Forest Avenue & 175 Catherine Street South Watermain Hydraulic Analysis

Friday, November 17, 2023

Urban Solutions | C3W-221655

CIMA+

900–101 Frederick Street Kitchener, ON N2H 6R2 cima.ca

Contact

Sam Ziemann sam.ziemann@cima.ca T 519-404-4529

Engineering for people

Urban Solutions

Water Hydraulic Analysis

117 Forest Avenue & 175 Catherine Street South Watermain Hydraulic Assessment Project no C3W-221655

Prepared by: Alec Orr, B.A.Sc., E.I.T. Water Specialist

Ryan Bolger, Student

Verified by:

Sam Ziemann, P.Eng., President

Table of Contents

1	Intr	oduction	. 1
	1.1	Background	. 1
	1.2	Limitations	.3
2	Cri	teria	. 4
	2.1	Pressure Requirements	. 4
	2.2	Domestic Demand	. 4
	2.3	Fire Flow Demand	.5
3	Нус	draulic Water Model	. 6
	3.1	Boundary Conditions	. 6
	3.2	Model Verification	. 6
	3.2.1	Dual Hydrant Test Results	11
	3.3	Development	12
4	Ana	alysis	14
	4.1	Available Fire Flow	14
	4.2	System Pressures	14
	4.3	Flushing	15
5	Со	nclusions	17

List of Tables

Table 2-1. Pressure Requirements	4
Table 2-2. Estimated Domestic Demands for the Proposed Development (SLA)	4
Table 2-3. Hamilton Residential Fire Flow Requirements	5
Table 3-1. Model Boundary Conditions – Base Configuration	6
Table 3-2. Hydrant Field Testing Results – HA15H025 – July 21, 2022	7
Table 3-3. Hydrant Field Testing Results – HA15H027 – July 21, 2023	7
Table 3-4. Summary of Boundary Conditions at Time of Hydrant Testing	9
Table 3-5. Theoretical Fire Flows at Hydrants HA15025 and HA15H027 at 20 PSI 1	11

Table 3-6. Summary of Hydrant and Model Data for Dual Hydrant Tests	12
Table 4-1. Available Fire Flow Results (L/s) for the Proposed Development	14
Table 4-2. Pressure Results (kPa) with Tanks Set at 50%	15
Table 4-3. Pressure Results (kPa) with Tanks Set at 75%	15
Table 4-4. Flushing Results with Tanks Set to 50% (ADD 2021)	16

List of Figures

Figure 1-1.	Proposed Development Area (Approximate)	. 2
Figure 3-1.	Field Testing Hydrant Used for Model Verification	. 8
Figure 3-2.	Verification Results – Hydrant HA15H025 on Forest Avenue	10
Figure 3-3.	Verification Results – Hydrant HA15H027 on Young Street	11
Figure 3-4.	Model Layout for the Proposed Development Area	13

List of Appendices

Appendix A: Site Plan Appendix B: Field Testing Report Appendix C: Model Verification – C-factor Change Log Appendix D: Fire Flow Results Appendix E: System Pressures Appendix F: Flushing Results

1 Introduction

1.1 Background

The proposed development at 117 Forest Avenue & 175 Catherine Street South is located in Pressure District 2 (PD2) in the City of Hamilton (City). The development area is located on the northeast corner of the intersection between Forest Avenue and Catherine Street South. Figure 1-1 illustrates the proposed development area and nearby watermains, all of which are cast iron (CI). The development includes a 24-storey multiple dwelling building in addition to the existing 11-storey building located on the subject lands. The development area is currently supplied by a 300 mm watermain on Forest Avenue and a 150 mm watermain on Catherine Street South. A site plan is available in Appendix A.

Figure 1-1. Proposed Development Area (Approximate)

PD2 is supplied by Pressure District 1 through pumping station HD002, which consists of four (4) pumps. PD2 has two (2) storage reservoirs HDR02 and HDR2A that provide storage.

C3 Water Inc (C3W) has been retained by Urban Solutions to complete a watermain hydraulic analysis for the proposed development. This report provides the watermain hydraulic analysis in accordance with the City of Hamilton's Comprehensive Development Guidelines (2018) (Hamilton Guidelines) and the Ministry of Environment, Conservation and Parks (MECP) Design Guidelines for Drinking-Water Systems (2008) (MECP Guidelines). The hydraulic assessment was completed using the City's full pipe model, titled "Hamilton_EPS_200625_include_PD9_10" using Bentley WaterCAD Connect Edition Update 3 10.03.02.75 software.

1.2 Limitations

This TM is intended to provide servicing results for the proposed development based on the City's hydraulic water model. This water model was built and coarsely calibrated by others. As with any modelling assignment, limitations related to the state of the model, the software capabilities, and theoretical data inputs should be considered. The model software also has inherent limitations and assumptions related to the calculation engine and inputs.

2 Criteria

2.1 Pressure Requirements

The MECP Guidelines outline maximum and minimum system pressures for standard operating conditions as well as fire flow conditions. As outlined in the City of Hamilton's Water and Wastewater Masterplan (KMK, 2006), acceptable hydrant and service connection pressures under normal conditions range from 275 kPa to 690 kPa. Standard operating conditions were assessed for the proposed development to ensure that water services maintained acceptable pressure under various demand and fire flow conditions for existing (2021) and future (2031) scenarios. Table 2-1 provides the pressure criteria that were utilized.

Pressure Requirement	Minimum	Preferred	Maximum
Standard Operating Conditions	275 kPa (40 psi)	350 to 480 kPa (50 to 70 psi)	690 kPa (100 psi)
Maximum Day Demands + Fire Flows	140 kPa (20 psi)		

2.2 Domestic Demand

The domestic demands for the proposed development were calculated by S. Llewellyn & Associates Limited (SLA) using the Ontario Building Code (OBC) fixture unit method. Peaking factors of 2.75 and 4.13 were used for max day demand (MDD) and peak hour demand (PHD), respectively. Demands are only for the new 14-storey multiple dwelling building as it was assumed that the demands for the existing building were already accounted for the in the City's existing water model. The ADD, MDD and PHD for the development are summarized in Table 2-2.

Table 2-2. Estimated Domestic Demands for the Proposed Development (SLA)

Development	Demand (L/s)		
	ADD	MDD	PHD
117 Forest Avenue	6.6	18.2	23.7

2.3 Fire Flow Demand

The fire flow requirements for the proposed development were estimated by the Hamilton Watermain Fire Flow Requirement Design Guidelines Policy (PW19096). The City's residential fire flow requirements are summarized in Table 2-3 below. The development is required to meet a minimum fire flow of 150 L/s at a residual pressure of 140 kPa under MDD conditions, as specified in Table 2-3.

Development Type	Target Fire Flow (L/s)
Residential Multi (>3 units)	150
Residential Medium (≤ 3 units)	125
Residential Single	75
Residential Single (Dead End)	50

Table 2-3. Hamilton Residential Fire Flow Requirements

3 Hydraulic Water Model

3.1 Boundary Conditions

The proposed development was modelled under the following demand scenarios under both existing (2021) and ultimate build-out (currently 2031) conditions:

- Average Day Demand (ADD)
- Maximum Day Demand (MDD)
- MDD plus Fire Flow
- Peak Hour Demand (PHD)

Table 3-1summarizes the initial boundary conditions set up in the model for PD2. The pumps at the water treatment plant (WTP) were turned off (reservoir only conditions). All pumps at pump station HD002 were turned off. The tank levels for reservoirs HDR02 and HDR2A were set to 50% full (144.33 m) and 75% full (146.08 m), respectively, as specified by the City.

Element	Initial Status - HGL		
PD2 Tank Level	144.33 m (50%)	146.08 m (75%)	
WTP Pumps	Off	Off	
HD002-PMP-1	Off	Off	
HD002-PMP-2	Off	Off	
HD002-PMP-3	Off	Off	
HD002-PMP-4	Off	Off	

 Table 3-1. Model Boundary Conditions – Base Configuration

3.2 Model Verification

The accuracy of the model in the area of the proposed development was verified using hydrant field test results, completed by SCG Flowmetrix on July 21, 2022. The hydrant field test results for Forest Avenue and Young Street are summarized in Table 3-2 and

Table 3-3. Figure 3-1 provides the location of the residual and flow hydrants that were used for verification. Pressures were measured at the residual hydrants. Two hydrant ports were opened at each flow hydrant during the hydrant tests. The hydrant testing reports are available in Appendix B.

Forest Avenue			
Flow (L/s) at Hydrant HA15H025 Pressure (kPa) at Hydrant HA15H02			
0	435		
61.33	414		
Theoretical Flow at 20 psi			
253.98 140			

Table 3-2. Hydrant Field Testing Results – HA15H025 – July 21, 2022

Table 3-3. Hydrant Field Testing Results – HA15H027 – July 21, 2023

Young Street			
Flow (L/s) at Hydrant HA17H027 Pressure (kPa) at Hydrant HA017			
0	435		
34.96	410		
Theoretical Flow at 20 psi			
134.21	140		

117 Forest Avenue & 175 Catherine Street South Watermain Hydraulic Assessment

Figure 3-1. Field Testing Hydrant Used for Model Verification

PD2 SCADA data was requested from the City to determine the boundary conditions during the field testing. A summary of the boundary conditions used for model verification is provided in Table 3-4. The model was compared to the hydrant test results under 2021 ADD conditions.

Element	Flow Hydrant HA15H025	Flow Hydrant HA15H027
Time of Test	12:00 PM	11:30 AM
Average Tank HDR02 Level	143.70 (41%)	143.66 m (41%)
Average Tank HDR2A Level	144.31 (50%)	144.28 m (49%)
WTP Pump 1	Off	Off
WTP Pump 2	On	On
WTP Pump 3	On	On
WTP Pump 4	Off	Off
WTP Pump 5	On	On
WTP Pump 6	Off	Off
HD002-PMP-1	Off	Off
HD002-PMP-2	Off	Off
HD002-PMP-3	Off	Off
HD002-PMP-4	On	On
PD2 Discharge Flow – Average (L/s)	455	456

Table 3-4. Summary of Boundary Conditions at Time of Hydrant Testing

Figure 3-2 and Figure 3-3 illustrate the field test and model verification results for the hydrants on Forest Avenue (HA15H025) and Young Street (HA15H027). Field results beyond maximum testing flows are extrapolated. The focus of the model verification was on the drop in pressure caused by the hydrant test.

When using the original C-factors in the City's model, the pressure drop caused by the hydrant flows on Forest Avenue and Young Street were found to be significantly less than what was recorded in the field. C-factors were adjusted in the model such that the model results more closely represented the field test results. In general, the C-factors for the existing 150-300 mm CI watermains between the PD2 pump station (HD002) and the development area were reduced from between 80 and 130 to between 20 and 25. A detailed C-factor change log can be found in Appendix C.

The C-factor changes were made to the model to provide a better fit to the field tests. In C3W's opinion the C-factor adjustments required to match the field-testing data are lower than expected as a C-factor of 20 is very conservative for a CI pipe. There may be other factors involved in the limited hydraulic capacity of the system that could be considered such as accuracy of data such as watermain diameters, valve status, system connectivity and other C-factors throughout the PD2 zone.

Additionally, the theoretical fire flows at 140 kPa (20 psi) on Forest Avenue and Young Street were extrapolated based on only a 21 kPa (3.1 psi) and 25 kPa (3.6 psi) difference, respectively, between the field-testing static and residual pressures. Typically, it is recommended that a 25% drop in pressure be required to adequately estimate the pressures at 20 psi. Pressure drops of 109 kPa (15.8 psi) would be required at both hydrants to satisfy this recommendation, based on the field-testing static pressures.

The model was updated to best match the field results within reasonable accuracy, and the adjusted C-factors were used for the remaining analysis.

Figure 3-2. Verification Results – Hydrant HA15H025 on Forest Avenue

Figure 3-3. Verification Results – Hydrant HA15H027 on Young Street

3.2.1 Dual Hydrant Test Results

Additional hydrant tests were completed by SCG Flowmetrix on September 13, 2022, that involved running hydrants HA15H025 and HA15H027 simultaneously on Forest Avenue and Young Street, respectively. The residual pressures were measured at hydrants HA15H026 and HA15H028 on Forest Avenue and Young Street, respectively, during the tests. The purpose of the tests were to confirm the fire flow near the development when a second nearby hydrant was flowing in the distribution system. The theoretical fire flows at hydrants HA15H025 and HA15H027 at 20 PSI with one (1) and two (2) hydrants running are summarized in Table 3-5. With a second hydrant running, the fire flow near the development drops by approximately 20 L/s. The additional hydrant testing results are included in Appendix B.

Hydrant	Theoretical Flow at 20 PSI (1 hydrant running)	Theoretical Flow at 20 PSI (2 hydrants running)
HA15H025	253.98 L/s	235.14 L/s
HA15H027	134.21 L/s	113.06 L/s

Table 3-5. Theoretical Fire Flows at Hydrants HA15025 and HA15H027 at 20 PSI

The additional hydrant testing data was also used to confirm the model verification results. **Error! Reference source not found.** summarizes the residual pressures and flows during both hydrant tests as well as the residual pressures estimated by the model at the field tested flows. The model boundary conditions were updated to reflect system conditions on September 13, 2022. The model results were more conservative than the field test results for the range of flows seen during both tests. This was also shown by the original model verification results in **Error! Reference source not found.**

Hydrant Test	Residual Hydrant	Flow at Hydrant HA15H025 (L/s)	Flow at Hydrant HA15H027 (L/s)	Total Flow (L/s)	Field Test Residual Pressure (PSI)	Model Residual Pressure (PSI)
1	HA15H026	61.7	32.2	93.9	62.6	61.0
2	HA15H028	58.2	33.1	91.3	61.3	57.0

Table 3-6. Summary of Hydrant and Model Data for Dual Hydrant Tests

3.3 Development

Figure 3-4 illustrates the location of the proposed development. The development will be serviced by a connection on the existing 300 mm watermain on Forest Avenue.

The elevation of the development node (J-471) was estimated using Hamilton's existing water model and the elevations of the surrounding nodes. The elevation of the demand node is 102.34 m.

Figure 3-4. Model Layout for the Proposed Development Area

4 Analysis

4.1 Available Fire Flow

The model was used to determine the available fire flow at the development node (J-471) and the existing hydrant on Forest Avenue (HA15H025).

Table 4-1 summarizes the available fire flows at the development node (J-471) and the existing hydrant on Forest Avenue (HA15H025) under MDD 2021 and 2031 conditions, at a residual pressure of 140 kPa, and HDR02 and HDR2A tank levels set at 50% and 75%. The minimum available fire flow of 150 L/s can be achieved at the development node and existing hydrant on Forest Avenue (HA15H025) under all scenarios. The complete fire flow results are available in Appendix D.

The fire flow results in the model are lower than the field testing results due to pressure and flow being measured at different hydrants during the field test. The headlosses in the watermain between the two (2) hydrants is not accounted for in the field test since the pressure is not measured at the flow hydrant. In the model analysis, both the flow and pressure are measured at the same hydrant so the headlosses associated with the low C-factor in the existing 300 mm watermain on Forest Avenue are included in the calculation. Due to the low C-factor, there is a high headloss in this section of pipe which results in a lower available fire flow.

	20)21	20	31	Meets
Node	Tank Level			FF	
	50%	75%	50%	75%	Criteria?
HA15H025	166	173	156	162	TRUE
J-471	158	164	150	157	TRUE

Table 4-1. Available Fire Flow Results (L/s) for the Proposed Development

4.2 System Pressures

The pressure results for the development node (J-471) and the existing hydrant on Forest Avenue (HA15H025) are summarized in Table 4-2 and Table 4-3 with PD2 tank levels set to 50% and 75%, respectively, and the PD2 and WTP pumps off. Under each of the scenarios, the pressures ranged between 370 kPa – 423 kPa, which are within

the City's allowable operating pressure range of 275 – 690 kPa. The complete system pressure results are included in Appendix E.

	AI	DD	MC	D	Pł	HD
Node	2021	2031	2021	2031	2021	2031
HA15H025	404	403	392	389	377	370
J-471	406	405	394	390	379	371

Table 4-2. Pressure Results (kPa) with Tanks Set at 50%

 Table 4-3. Pressure Results (kPa) with Tanks Set at 75%

	A	DD	MC	D	Pł	ΗD
Node	2021	2031	2021	2031	2021	2031
HA15H025	421	420	410	406	395	387
J-471	423	421	412	408	396	389

4.3 Flushing

The hydraulic model was used to evaluate the flushing capacity in the existing 300 mm watermain on Forest Avenue, with PD2 tank levels set at 50% full and the PD2 and WTP pumps offline. The 2021 ADD scenario was used to represent existing conditions for construction flushing requirements. Flushing demands were modelled to replace domestic demands while the area is under development. Results were based on a minimum velocity of 0.8 m/s as required by the MECP Guidelines. Hydrant nodes were modelled with an emitter coefficient of 11.2 L/s/m^{0.5} (150 gpm/psi). This value is recommended by the American Water Works Association (AWWA) to represent a single 60mm (2.5") outlet and considers all lateral valve and bends within the hydrant.

Table 4-4 summarizes the flushing results for the existing 300 mm watermain on Forest Avenue. A flushing velocity of 0.8 m/s was achieved in the existing 300 mm watermain when the tank levels are set to 50%. The complete flushing report is available in Appendix F.

Pipe	Length (m)	Diameter (mm)	Flushing Velocity (m/s)	Meets Criteria
HA15W12654(1)(2)(1)	20	300	1.12	TRUE
HA15W12654(1)(2)(2)	123	300	1.09	TRUE

 Table 4-4. Flushing Results with Tanks Set to 50% (ADD 2021)

5 Conclusions

This analysis was based on the City's existing hydraulic water model. The model was verified using field test results and the City's historical SCADA data. The C-factors of the watermains near the development area were adjusted to provide a closer representation of the hydraulic capacity of the water system based on field testing data provided. Lower than expected C-factors were required on the CI watermains near the development area to better match the model results to the field testing.

The watermain hydraulic assessment of the proposed 117 Forest Avenue & 175 Catherine Street South development demonstrated that:

- 1. Under the proposed development conditions, the minimum available fire flow requirement of 150 L/s was achieved at the development node (J-471) and the existing hydrant on Forest Avenue (HA15H025) under MDD 2021 or MDD 2031 conditions.
- The service pressures under existing conditions, and ultimate build-out (currently 2031*) conditions are within the standards established by the MECP and City of Hamilton Guidelines. Under the proposed development conditions the pressures are expected to range between 370 kPa 423 kPa.
- 3. The minimum flushing velocity of 0.8 m/s, as required by the MECP guidelines, can be achieved in the existing 300 mm watermain on Forest Avenue.
- * As amended from time to time as per Official Plan Report Content

A

Appendix A: Site Plan

A0.01

CONTRACTOR MUST CHECK AND V CONDITIONS BEFORE PRO ALL DRAWINGS MAY BE TO BE SUBJEC FROM MUNICIPAL DEPARTMENTS AND ALL DRAWINGS AND SPECIFICATIC ARCHITECTS AND MUST BE RETURNED THE CONTRACTOR WORKING FROM DR "FOR CONSTRUCTION" MUST ASSUME FU FOR ANY CORRECTIONS OR DAMAGES I	VERIFY ALL DIMENSIONS AND JOB ROCEEDING WITH WORK CT TO CHANGE DUE TO COMMENTS OTHER AGENCIES WITH AUTHOURITY DNS ARE THE PROPERTY OF THE D AT THE COMPLETION OF THE WORK RAWINGS NOT SPECIFICALLY MARKED ULL RESPONSIBILITY AND BEAR COSTS RESULTING FROM HIS OR HER WORK.				
NO. DETAIL LOCATION NO. DETAIL NUMBE NO. DRAWING SHEE	ER ET NUMBER				
DRAWING SETS ISSUED ISSUED FOR SPA ISSUED FOR SPA SPA COMMENTS ISSUED FOR BP APPROVAL	DATE No. DATE (DD,MM,YY) BY 1. 23.04.19 KNYMH 2. 10.05.21 KNYMH 3. 10.08.21 KNYMH 4. 29.07.22 KNYMH 9. 9.000000000000000000000000000000000000				
ALL PREVIOUS ISSUES OF THIS REVISIONS TO DETWINE NOTIFICATIONS	DATE DATE DATE DATE DATE DATE DATE				
	MIT NUMBER:				
A R C H I T E C T U R E 1006 SK BURLING www.knymh.com	• SOLUTIONS • SOLUTIONS • SOLUTIONS • SOLUTIONS • SOLUTIONS • SOLUTIONS • SOLUTIONS • SOLUTIONS • SUITE 101 GTON, ONTARIO • L7P 0V1 T 905.639.6595 F 905.639.0394 • Info@knymh.com				
BROCKTON APARTMENTS 175 Catharine St S Hamilton, Ontario					
DRAWING SHEET TITLE:					
DRAWING SCALE: As indicated	PROJECT NUMBER: 21039				
DRAWN BY: CHECKED BY: DRAWING VERSION: PLOT DATE: 2021-08-05	DRAWING SHEET NUMBER:				

B

Appendix B: Field Testing Report

Residual Hydrant # HA15H)26
DROCERS	
NFPA Colour Code Bl	.UE
170 153 107 109 113 107 109 113 DATE	21 2022
78 117 146 Young Street 133 150 133 135 141 148	L2:00 PM
175 ADDRESS 146 Fores	t Avenue
HA15H025	ilton, ON
1 117 125 166 16 1 107 125 172 165 1 125 172 165 1 15 174	L8N 1X5
HA15H026 173 171 SIZE-inches/mm 8	300
O Flow Hydrant O Residual Hydrant	DI
RESIDUAL HYDRANT INFO.	
HYDRANT # HA15H026 Sco	tt Beedie
N.F.P.A. COLOUR CODE BLUE Urban	Solutions
(905) 5	46-1087
STATIC PRESSURE63.1psi <u>sbeedie@urbansoli</u>	<u>itions.info</u>
RESIDUAL PRESSURE - ONE PORT OPEN 60.2 psi	
RESIDUAL PRESSURE - TWO PORTS OPEN 60.0 psi	

PRESSURE DROP	3.1	psi
	4 9	% r

% PRESSURE DROP	4.9	% psi

Flow at Test Hydrant @ 20 psi

USGPM 4025

FLOW HYDRANT(S) INFO.

HYDRANT	HYD.	OUTLET	NOZZLE	DIFFUSER	DIFFUSER	PITOT	PITOT	FLOW
ASSET	#	DIAMETER	COEFFICIENT	TYPE	COEFFICIENT	READING	FLOW	METER
ID	PORTS	(INCHES)				(psi)	(USGPM)	(USGPM)
	1	2.5	Round	LPD250	0.90	20.5	692	0
HA15H025	<u> </u>						065	0
	2	2.5	Round	LPD250	0.90	10.4	072	0
HA15H025	Z	2.5	Round	LPD250	0.90	10.4	972	0

FIRE FLOW CHART

Pressure - Flow Graph at Test Hydrant

Urban solution_FireFlowTestingReport_Forest Ave_Hamilton

"If we don't measure it, how do you manage it?"

SCG	FLOWMETRIX INDU-TECH PROCESS	Residual Hydrant # NFPA Colour Code	HA15H028 BLUE
2 78 80 82 86 92 96 142 144 144 144 144 126 HA15H036 107 38 107 107 107 107 107 109 113 107 107 107 107 107 107 107 107	HA15H037	DATE	July 21, 2022 11:30 AM
148 150 152 152 141 108 100 112 114 116 118 108 110 112 114 116 118 118 119 118 118 119 119 118 118	B 122 126 128	ADDRESS	50 Young Street
153 155 157 103 107 109 113 107 109 113 107 109 113 107 109 113 107 109 113 107 109 113 107 109	132 136 144 146 148 27 148 5hi	_	Hamilton, ON L8N 1V2
Legend O Flow Hydrant Residual Hydrant	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SIZE-inches/mm MATERIAL	6 150 DI
RESIDUAL HYDRANT INFO.		_	
HYDRANT #	HA15H028	CONTACT INFO	Laura Drennan
N.F.P.A. COLOUR CODE	BLUE	_	Urban Solutions
		_	(905) 546-1087
STATIC PRESSURE	63.1psi	_	ldrennan@urbansolutions.info
RESIDUAL PRESSURE - ONE PORT OPEN	<u> </u>		
RESIDUAL PRESSURE - TWO PORTS OPEN	59.5psi		

	0407	
% PRESSURE DROP	5.7	% psi
PRESSURE DROP	3.6	psi

Flow at Test Hydrant @ 20 psi

2127 USGPM

FLOW HYDRANT(S) INFO.

HYDRANT	HYD.	OUTLET	NOZZLE	DIFFUSER	DIFFUSER	PITOT	PITOT	FLOW
ASSET	#	DIAMETER	COEFFICIENT	TYPE	COEFFICIENT	READING	FLOW	METER
ID	PORTS	(INCHES)				(psi)	(USGPM)	(USGPM)
HA15H027	1	2.5	Round	LPD250	0.90	9.7	171	0
	T						471	0
	2	2.5	Round	LPD250	0.90	3.4	EE A	0
HAISHUZ/	Ζ	2.5	Round	LPD250	0.90	3.4	554	0

FIRE FLOW CHART

Pressure - Flow Graph at Test Hydrant

Urban solution_FireFlowTestingReport_Augusta St_Hamilton

"If we don't measure it, how do you manage it?"

			0.1
SCG	INDU-TECH	Residual Hydrant #	HA15H026
	FNOCESS	NFPA Colour Code	BLUE
170 100 100 100 107 108	113	DATE	Sentember 13, 2022
HA15H028 Young Street	11/ 1/46 5H027 1/25 1/27 1/31 1/50 1/33 1/35	тіме	12:00 PM
1/0 / 100 100	124 132	ADDRESS	146 Forest Avenue
HAISHO2S	136 138 140 144	159	Hamilton, ON
2 80 000 117 12 1970 12	5 100 172	10 100 100 67	L8N 1X5
Legend	HA15H026	SIZE-inches/mm	8 300
Flow Hydrant Residual Hydrant	181 183 142 146	MATERIAL	DI
RESIDUAL HYDRANT INFO.			
HYDRANT #	HA15H026	CONTACT INFO	Scott Beedie
N.F.P.A. COLOUR CODE	BLUE		Urban Solutions
			(905) 546-1087
STATIC PRESSURE	66.5 psi		sbeedie@urbansolutions.info
RESIDUAL PRESSURE	62.6 psi		
PRESSURE DROP	3.9 psi		
% PRESSURE DROP	5.9 % p	i	
Flow on Water Main at Test Hydrant @ 20 psi	3727 USC	PM	

FLOW HYDRANT(S) INFO.

T

	HYD.	OUTLET	NOZZLE	DIFFUSER	DIFFUSER	PITOT	PITOT	FLOW
FLOW HYDRANT ID	#	DIAMETER	COEFFICIENT	TYPE	COEFFICIENT	READING	FLOW	METER
	PORTS	(INCHES)				(psi)	(USGPM)	(USGPM)
HA15H025	2	2.5	Round	LPD250	0.90	10.5	489	0
HAISHU25	2	2.5	Round	LPD250	0.90	10.5	489	0
	2	2.5	Round	LPD250	0.90	3.1	266	0
HAISHUZ7	2	2.5	Round	Swivel	0.83	3.1	245	0
					Total Flow (USGPM)	1490	0
					Total Flow (USGPM)	14	90

FIRE FLOW CHART

Pressure - Flow Graph

OPERATOR

Andrew Cheung Noushin Ahanrobay City of Hamilton

	FLOWMETRIX	literi	e now resting report		
	PROCESS	Residual Hydrant #	HA15H028		
	WEST CAN	NFPA Colour Code	BLUE		
170 150 150 177 78	as 107 100 113	DATE	September 13, 2022		
HA15H028 Young Str	HA15H027 1120 127 131 130 133 150 155 131	TIME	12:30 PM		
170	110 124 137 134 140 17	ADDRESS	50 Young Street		
HA15H025 117	136 138 144 150 100 100 16		Hamilton, ON		
2 Person 192 Porrest	125 172 165 135 174 167				
Legend	HA15H026	SIZE-inches/mm	6 150		
Flow Hydrant Residual Hydrant	147 15 147 140	MATERIAL	DI		
RESIDUAL HYDRANT INFO.					
HYDRANT #	HA15H028	CONTACT INFO	Scott Beedie		
N.F.P.A. COLOUR CODE	BLUE		Urban Solutions		
			(905) 546-1087		
STATIC PRESSURE	66.0 psi		sbeedie@urbansolutions.info		
RESIDUAL PRESSURE	b1.3psi				
PRESSURE DROP	4.7 psi				
% PRESSURE DROP	7.2 % psi				

Flow on Water Main At Test Hydrant

20 psi

1792 USGPM

FLOW HYDRANT(S) INFO.

HYDRANT	HYD.	OUTLET	NOZZLE	DIFFUSER	DIFFUSER	PITOT	PITOT	FLOW
ASSET	#	DIAMETER	COEFFICIENT	TYPE	COEFFICIENT	READING	FLOW	METER
ID	PORTS	(INCHES)				(psi)	(USGPM)	(USGPM)
	2	2.5	Round	LPD250	0.90	9.3	461	0
HA15H025	2	2.5	Round	LPD250	0.90	9.3	461	0
	2	2.5	Round	LPD250	0.90	3.0	262	0
HAISHUZ/	2	2.5	Round	LPD250	0.90	3.0	262	0
	•				Total Flow (USGPM)	1445	0
					Total Flow (USGPM)	14	45

Total Flow (USGPM)

FIRE FLOW CHART

Pressure - Flow Graph

Andrew Cheung Noushin Ahanrobay City of Hamilton

C

Appendix C: Model Verification – C-factor Change Log

Model Verification - C-Factor Adjustment Log

ID	Label	Start Node	Stop Node	Street	Diameter (mm)	Material	Hazen-Williams C	Length (m)	Adusted c-factor
33453	HA15W12665(1)	HA15T024	HA15H037	Augusta	150	Cast Iron	80	5	22
33454	HA15W12665(2)	HA15H037	HA14C006	Augusta	150	Cast Iron	80	85	22
33460	HA15W12667(1)	HA15C011	HA15H036	Augusta	150	Cast Iron	80	120	22
33461	HA15W12667(2)	HA15H036	HA15T024	Young Street	150	Cast Iron	80	79	22
23632	HA15W12661	HA15C013	HA15C018	Catherine Street South	150	Cast Iron	80	100	25
33463	HA15W12662(1)	HA14C007	HA15H027	Young Street	150	Cast Iron	80	97	25
33464	HA15W12662(2)	HA15H027	HA15C013	Young Street	150	Cast Iron	80	89	25
33466	HA15W12670(1)	HA15R004	HA15H028	Young Street	150	Cast Iron	80	76	25
33467	HA15W12670(2)	HA15H028	HA15C013	Young Street	150	Cast Iron	80	9	25
23631	HA15W20308	HA15C013	HA15T041	Catherine Street South	150	Cast Iron	80	211	25
23667	HA14W12653	HA14V014	HA14C009	Forest Avenue	150	Cast Iron	80	1	20
23668	HA14W13250	HA14T011	HA14V014	Forest Avenue	150	Cast Iron	80	73	20
23666	HA14W13290	HA14C009	HA14C007	Walnut Street South	150	Cast Iron	80	101	20
23664	HA14W13291	HA14C006	HA14C007	Walnut Street South	150	Cast Iron	80	100	20
23663	HA14W13292	HA14C002	HA14C006	Walnut Street South	150	Cast Iron	80	167	20
28902	HA14W22892	HA14T045	HA14T039	Forest Avenue	300	Cast Iron	130	123	20
23721	HA14W23899	HA14C009	HA14T063	Forest Avenue	300	Cast Iron	130	105	20
33472	HA15W12654(1)(1)	HA15C018	HA15H025	Forest Avenue	300	Cast iron	80	25	20
33473	HA15W12654(1)(2)	HA15H025	HA15H026	Forest Avenue	300	Cast iron	80	143	20
33470	HA15W12654(2)	HA15H026	HA14C009	Forest Avenue	300	Cast iron	80	19	20
23574	HA15W12660	HA15R001(2)	HA15C018	Forest Avenue	300	Cast Iron	80	84	20

D

Appendix D: Fire Flow Results

MDD - 202	1 Tanks 50%	%														
		Satisfies Fire		Fire Flow	Fire Flow	Flow	Flow	Pressure	Pressure	Pressure	Pressure (Calculated Zone	Junction w/Minimum	Pressure (System	Pressure (Calculated	Junction w/ Minimum	Is Fire Flow
Label	Zone	Flow Constraints?	Fire Flow Status	(Needed) (L/s)	(Available) (L/s)	(Total Needed) (L/s)	(Total Available) (L/s)	(Residual Lower Limit) (kPa)	(Calculated Residual) (kPa)	(Zone Lower Limit) (kPa)	Lower Limit) (kPa)	Pressure (Zone)	Lower Limit) (kPa)	System Lower Limit) (kPa)	Pressure (System)	Run Balanced?
HA15H025	2	TRUE	Passed	150	166.16	150	166.16	138	138	138	152	J-471	(N/A)	-18,164	DL06T014	TRUE
J-471	2	TRUE	Passed	150	157.68	168.18	175.86	138	138	138	155	HA28L002	(N/A)	-18,164	DL06T014	TRUE
MDD - 202	MDD - 2021 Tanks 75%															
		Satisfies Fire		Fire Flow	Fire Flow	Flow	Flow	Pressure	Pressure	Pressure	Pressure (Calculated Zone	Junction w/ Minimum	Pressure (System	Pressure (Calculated	Junction w/ Minimum	Is Fire Flow Run
Label	Zone	Flow Constraints?	Fire Flow Status	(Needed) (L/s)	(Available) (L/s)	(Total Needed) (L/s)	(Total Available) (L/s)	(Residual Lower Limit) (kPa)	(Calculated Residual) (kPa)	(Zone Lower Limit) (kPa)	Lower Limit) (kPa)	Pressure (Zone)	Lower Limit) (kPa)	System Lower Limit) (kPa)	Pressure (System)	Balanced?
HA15H025	2	TRUE	Passed	150	172.82	150	172.82	138	138	138	153	J-471	(N/A)	-18,164	DL06T014	TRUE
J-471	2	TRUE	Passed	150	164.01	168.18	182.19	138	138	138	172	HA28L002	(N/A)	-18,164	DL06T014	TRUE
MDD - 203	MDD - 2031 Tanks 50%															
		Satisfies Fire Flow		Fire Flow	Fire Flow	Flow	Flow	Pressure	Pressure	Pressur	Pressure (Calculated Zone	Junction w/ Minimum	Pressure (System	Pressure (Calculated	Junction w/ Minimum	Is Fire Flow
Label	Zone	Constraints?	Fire Flow Status	(Needed) (L/s)	(Available) (L/s)	(Total Needed) (L/s)	(Total Available) (L/s)	(Residual Lower Limit) (kPa)	(Calculated Residual) (kPa)	(Zone Lower Limit) (kPa)	Lower Limit) (kPa)	Pressure (Zone)	Lower Limit) (kPa)	System Lower Limit) (kPa)	Pressure (System)	Run Balanced?
HA15H025	2	TRUE	Passed	150	156.04	150	156.04	138	138	138	149	HA15S004	(N/A)	-34	HD03A-J22	TRUE
J-471	2	TRUE	Passed	150	150.49	168.18	168.67	138	138	138	155	HA28L002	(N/A)	-34	HD03A-J22	TRUE
MDD - 203	1 Tanks 75%	%														
		Satisfies Fire Flow		Fire Flow	Fire Flow	Flow	Flow	Pressure	Pressure	Pressure	Pressure (Calculated Zone	Junction w/ Minimum	Pressure (System	Pressure (Calculated	Junction w/ Minimum	Is Fire Flow
Label	Zone	Constraints?	Fire Flow Status	(Needed) (L/s)	(Available) (L/s)	(Total Needed) (L/s)	(Total Available) (L/s)	(Residual Lower Limit) (kPa)	(Calculated Residual) (kPa)	(Zone Lower Limit) (kPa)	Lower Limit) (kPa)	Pressure (Zone)	Lower Limit) (kPa)	System Lower Limit) (kPa)	Pressure (System)	Run Balanced?
HA15H025	2	TRUE	Passed	150	162.45	150	162.45	138	138	138	151	J-471	(N/A)	-34	HD03A-J22	TRUE
1 471	2	TRUE	Passed	150	156.67	168.18	174.85	138	138	138	171	HA15H025	(N/A)	-34	HD03A-122	TRUE

	_

Appendix E: System Pressures

ADD -2021 Tank -75%

ID	Label	Elevation (m)	Zone	Demand Collection	Demand (L/s)	Hydraulic Grade (m)	Pressure (kPa)
33471	HA15H025	102.56	2	<collection: 1="" item=""></collection:>	0	145.59	421
33553	J-471	102.34	2	<collection: 1="" item=""></collection:>	6.61	145.59	423

ADD - 2021 tank 50%

ID	Label	Elevation (m)	Zone	Demand Collection	Demand (L/s)	Hydraulic Grade (m)	Pressure (kPa)
33471	HA15H025	102.56	2	<collection: 1="" item=""></collection:>	0	143.84	404
33553	J-471	102.34	2	<collection: 1="" item=""></collection:>	6.61	143.84	406

ADD - 2031 tanks 50%

ID	Label	Elevation (m)	Zone	Demand Collection	Demand (L/s)	Hydraulic Grade (m)	Pressure (kPa)
33471	HA15H025	102.56	2	<collection: 0="" items=""></collection:>	0	143.74	403
33553	J-471	102.34	2	<collection: 1="" item=""></collection:>	6.61	143.74	405

ADD - 2031 tanks 75%

ID	Label	Label Elevation (m)		Demand Collection	Demand (L/s)	Hydraulic Grade (m)	Pressure (kPa)
33471	HA15H025	102.56	2	<collection: 0="" items=""></collection:>	0	145.51	420
33553	J-471	102.34	2	<collection: 1="" item=""></collection:>	6.61	145.51	422

MDD - 2021 tanks 50%

ID	Label	Label Elevation (m)		Demand Collection	Demand (L/s)	Hydraulic Grade (m)	Pressure (kPa)
33471	HA15H025	102.56	2	<collection: 0="" items=""></collection:>	0	142.68	393
33553	J-471	102.34	2	<collection: 1="" item=""></collection:>	18.18	142.64	394

MDD - 2021 tanks 75%

ID	Label	Label Elevation (m)		Demand Collection	Demand (L/s)	Hydraulic Grade (m)	Pressure (kPa)
33471	HA15H025	102.56	2	<collection: 0="" items=""></collection:>	0	144.43	410
33553	J-471	102.34	2	<collection: 1="" item=""></collection:>	18.18	144.39	412

MDD - 2031 tanks 50%

ID	Label	Elevation (m)	Zone	Demand Collection	Demand (L/s)	Hydraulic Grade (m)	Pressure (kPa)
33471	HA15H025	102.56	2	<collection: 0="" items=""></collection:>	0	142.28	389

33553	J-471	102.34	2	<collection: 1="" item=""></collection:>	18.18	142.26	391
-------	-------	--------	---	--	-------	--------	-----

MDD - 2031 tanks 75%

ID	Label	Elevation (m)	Zone	Demand Collection	Demand (L/s)	Hydraulic Grade (m)	Pressure (kPa)
33471	HA15H025	102.56	2	<collection: 0="" items=""></collection:>	0	144.03	406
33553	J-471	102.34	2	<collection: 1="" item=""></collection:>	18.18	144.01	408

PHD - 2021 Tanks 50%

ID	Label	Elevation (m)	Zone	Demand Collection	Demand (L/s)	Hydraulic Grade (m)	Pressure (kPa)
33471	HA15H025	102.56	2	<collection: 0="" items=""></collection:>	0	141.14	378
33553	J-471	102.34	2	<collection: 1="" item=""></collection:>	23.7	141.09	379

PHD - 2021 Tanks 75%

ID	Label	Elevation (m)	Zone	Demand Collection	Demand (L/s)	Hydraulic Grade (m)	Pressure (kPa)
33471	HA15H025	102.56	2	<collection: 0="" items=""></collection:>	0	142.89	395
33553	J-471	102.34	2	<collection: 1="" item=""></collection:>	23.7	142.84	396

PHD - 2031 Tanks 50%

ID	Label	Elevation (m)	Zone	Demand Collection	Demand (L/s)	Hydraulic Grade (m)	Pressure (kPa)
33471	HA15H025	102.56	2	<collection: 0="" items=""></collection:>	0	140.34	370
33553	J-471	102.34	2	<collection: 1="" item=""></collection:>	23.7	140.3	371

PHD - 2031 Tanks 75%

ID	Label	Elevation (m)	Zone	Demand Collection	Demand (L/s)	Hydraulic Grade (m)	Pressure (kPa)
33471	HA15H025	102.56	2	<collection: 0="" items=""></collection:>	0	142.09	387
33553	J-471	102.34	2	<collection: 1="" item=""></collection:>	23.7	142.05	389

F

Appendix F: Flushing Results

Flushing Analysis - Proposed Development, ADD 2021, Tanks at 50%

			Diameter	Flushing	Velocity (Maximum	Satisfies Flushing	Shear Stress (Maximum	Satisfies Flushing	Satisfies Flushing
ID	Label	Length (m)	(mm)	Event	Flushing) (m/s)	Target Velocity?	Flushing) (kg/m²)	Target Shear Stress?	Target?
33554	HA15W12654(1)(2)(1)	20	300	Event - 1	1.12	TRUE	10.19	TRUE	TRUE
33555	HA15W12654(1)(2)(2)	123	300	Event - 1	1.09	TRUE	9.58	TRUE	TRUE

Study: Flushing Study

20220901 Hamilton_EPS_200625_include_PD9_10_forest analysis.wtg 9/1/2022

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterCAD [10.03.02.75] Page 1 of 4

20220901 Hamilton_EPS_200625_include_PD9_10_forest analysis.wtg 9/1/2022

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterCAD [10.03.02.75] Page 2 of 4

Study: Flushing Study; Area: Forest; Event: Event - 1

Fire Hydrant		Notes	Pressure (kPa) Static, Dynamic	Measured Flow (L/s)	Predicted Pressure (kPa)	Predicted Flow (L/s)
HA14C009					110	38.72
HA15H026					114	38.53
Valve	Operation	Notes		Flushing	Minimum	Recommended
HA14W13290	Close			Time (min)	2.2	2.2
HA14W23899	Close			Volume (ML)	0.0	0.0
HA14W13250	Close			Start Time		
				End Time		
				Operator		
				Date		
				Water Quali	ty Init	ial Final
				Clear		
				Colored		
				Chlorine Resid	dual	
				Turbidity		
Pipe Run to be Cleaned						
HA15W12654(1)(2)(1), HA15W12	2654(1)(2)(2)					
Notes						

Study: Flushing Study; Area: Forest; Event: Event - 1

Final Actions

Valve	Operation	Notes
HA14W13290	Reopen	
HA14W23899	Reopen	

20220901 Hamilton_EPS_200625_include_PD9_10_forest analysis.wtg 9/1/2022

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 WaterCAD [10.03.02.75] Page 4 of 4