3054 Homestead Drive Erosion Threshold Assessment

Hamilton, Ontario

Prepared for: Fengate Homestead Holdings LP 2275 Upper Middle Road East, Suite 700 Oakville, ON L6H 0C3

September 8, 2023 PN22063

Geomorphology Earth Science Observations

Report Prepared by:	GEO Morphix Ltd. 36 Main Street North PO Box 205 Campbellville, ON LOP 1B0
Report Title:	3054 Homestead Drive Erosion Threshold Assessment Hamilton, Ontario
Project Number:	PN22063
Status:	Final
Version:	2.0
Submission Date:	September 8, 2023
Prepared by:	Kelsey Serviss, M.Sc. and Jan Franssen, Ph.D.
Approved by:	Paul Villard, Ph.D., P.Geo., CAN-CISEC, EP, CERP

Table of Contents

1	Intro	duction3
2	Backg	ground Review4
	2.1	Watershed Characteristics4
	2.2	Surficial Geology and Physiography4
	2.3	Historical Assessment4
3	Wate	rcourse Characteristics5
	3.1	Reach Delineation5
	3.2	General Reach Observations
	3.3	Rapid Field Assessments7
	3.4	Detailed Geomorphological Assessment9
4	Erosi	on Threshold Assessment9
	4.1	Methodology9
	4.2	Results10
5	Prelin	ninary Erosion Exceedance Analysis11
	5.1	Methods12
	5.2	Results13
6	Sumr	nary and Conclusions14
7	Refer	ences

List of Tables

Table 1: General Reach Observation Summary	6
Table 2: Reach Classification Summary	8
Table 3: Reach H1S3 detailed assessment and erosion threshold analysis results1	.1
Table 4: Reach H1S1 post- to pre-development erosion exceedance analysis results for later hydrological modelling iteration 1	st .4

Appendices

Appendix A Historical Aerial Photographs	A
Appendix B Reach Delineation	В
Appendix C Photographic Record	C
Appendix D Field Observations	. D
Appendix E Detailed Assessment Summary	E
Appendix F Erosion Modelling Hydrograph	F

1 Introduction

GEO Morphix Ltd. (GEO Morphix) was retained by Fengate Homestead Holdings LP to complete a fluvial geomorphology assessment and erosion threshold analysis in support of the proposed development located at 3054 Homestead Drive ("Subject Property") in the City of Hamilton, Ontario. The subject property is located immediately west of the Hamilton Airport, and east of Homestead Drive within the Airport Employment Growth District (AEGD). The development site is located within the jurisdiction of Niagara Peninsula Conservation Authority (NPCA). It is understood that stormwater management (SWM) outflows from two outlet structures will be discharged into a small headwater channel within the subject property, which eventually flows into Twenty Mile Creek.

The following activities were completed as part of the fluvial geomorphological assessment and erosion threshold analysis:

- Review topographic and geologic maps and previously completed reporting to inform field reconnaissance efforts and provide contextual information for existing conditions characterizations
- Complete a historical site assessment using aerial photograph records to identify changes to the system due to land use and past channel modifications within the primary and extended study areas
- Delineate watercourse reaches along the receiving watercourses through a desktop exercise
- Conduct field reconnaissance to document reach-scale observations of channel substrate, flow behaviour, geomorphological processes, locations of valley wall contacts, and areas of active erosion
- Complete reach-level rapid assessments at each outlet channel using standard accepted techniques for geomorphological assessments to characterize channel conditions, stability, and erosion sensitivity
- Complete a detailed geomorphological field assessment, the primary objective of which is to determine bankfull channel conditions and inform the determination of critical discharge erosion thresholds
- Determine an erosion threshold, expressed as a critical discharge, for the most erosionsensitive channel reach along the receiving watercourse within the immediate zone of impact associated with the proposed development

The work described above was summarized in version 1.0 of this report and submitted to Fengate Homestead Holdings LP on January 26, 2023. Comments from reviewing agencies were subsequently received requesting preliminary erosion exceedance modelling for the receiving watercourse to evaluate the proposed Stormwater Management (SWM) plan. An outlet is proposed in the northeast corner of the subject property to drain a proposed bioswale and will release flows to the small headwater channel west of Homestead Drive.

The following work was completed to support definition of erosion control criteria for the proposed outlet:

 Erosion exceedance analysis for Reach H1S1 comparing pre- to post-development conditions for the 25-mm design storm to support erosion mitigation approach for proposed stormwater management on site

2 Background Review

A review of pertinent background material was completed to inform and provide contextual information regarding local hydrology and stream morphology. Material reviewed included site plans, historical aerial photographs, published surficial geological mapping, physiological region and landform mapping, and various relevant background reporting documents.

2.1 Watershed Characteristics

The majority of subject property is located within the headwaters of the Twenty Mile Creek subwatershed, which encompasses a drainage area of approximately 291 km². Landuse within this subwatershed is predominantly comprised of rural and agricultural lands (Durley, 2006). The headwaters located on the subject property are associated with Three Mile Creek, a watercourse that drains eastward into Twenty Mile Creek, south of Dickenson Road E, east of Miles Road, approximately 4 kilometres from the subject property.

The remaining portion of the property resides within the Upper Welland River watershed. This watershed drains approximately 480 km² of land and contains nearly 3000 km of stream channels (NPCA, 2011). Approximately 55% of this channel length contains some level of riparian vegetation and habitat. Landuse within this watershed is similarly comprised of mostly rural and agricultural lands, with occasional pockets of low-density urban development, such as Mt. Hope.

2.2 Surficial Geology and Physiography

Surficial geology and physiography act as primary controls regarding channel development, as they greatly influence the hydrological and sediment characteristics of a given drainage system. Channel morphodynamics are largely governed by the flow regime and the availability and type of sediments within the stream corridor. These factors are explored as they not only offer insight into existing conditions, but also potential changes that could be expected in the future as they relate to a proposed activity.

The study area resides within the Haldimand Clay Plain physiographic region, which extends south from the Niagara escarpment to the north shore of Lake Erie. The region is characterized by a series of parallel recessional moraines comprised of sand and gravel with intervening troughs of silt and clay that control and occasionally impede local drainage. Soils in this region tend to exhibit a heavy texture with poor, uneven drainage (Chapman and Putnam, 1984). Published surficial geology mapping indicates the subject property has fine-textured sediment deposits described as massive-to well laminated and comprised primarily of silt and clays, as well as minor sands and gravels from glaciolacustrine origin (OGS, 2010).

2.3 Historical Assessment

A series of historical aerial photographs were reviewed to determine changes to the channel and surrounding land use and land cover. This information, in part, provides an understanding of the historical factors that have contributed to current channel morphodynamics and is used to inform erosion hazard assessments. Aerial photographs for the years 1934, 1950, 1963, 1969, 1978 and 1985 from the National Air Photo Library, and years 2005, 2012, 2014, 2017, 2018 and 2021 from Google Earth Pro, were reviewed. Select imagery is provided in **Appendix A** for reference.

The subject property and surrounding areas were actively cultivated prior to 1934. Landuse consisted primarily of agricultural areas with residential development along the intersection of Homestead Drive and Airport Road. At this time, all main roads were established. Headwater

tributaries present within the subject property appear to be draining agricultural fields across Homestead Drive, into Three Mile Creek. No riparian vegetation is evident.

Between 1934 and 1950, the Hamilton Airport began construction adjacent to the subject property. One headwater Tributary of Three Mile Creek, in the northeast portion of the subject property, appears to be more defined while exhibiting low sinuosity. By 1963, the construction of the Hamilton Airport was completed, upper James Street was constructed, and more housing development along Homestead Drive is evident. There are no changes to the headwater features. Between 1969 and 1978, no major changes in landuse or headwater features occur.

By 2005, a subdivision to the south of Airport Road, west of Homestead Drive/Upper James Street was constructed. The Hamilton Airport was expanded towards Homestead Drive by approximately 200 m, encroaching on the subject property. Willow Valley Golf Course was constructed within this time period. The primary landuse continues to remain dominated by agricultural landscapes. Minor riparian vegetation along the headwater drainage features begins to establish itself within the study site.

Between 2005 and 2009 a distinct riparian vegetation buffer (approximately 17 m wide) is evident along all headwater tributaries within, and near by the subject property. With the exception of the beginning stages of an Amazon facility being constructed, minor changes in landuse and headwater features are evident between 2009 and 2013. Between 2018 and 2021, the Amazon facility finished construction. No other changes are noted in landuse and headwater features between 2013 and 2021. No changes in landuse or headwater features draining to Three Mile Creek occur downstream of the subject property during the reviewed time period.

3 Watercourse Characteristics

3.1 Reach Delineation

Reaches are homogeneous segments of channel used in geomorphological investigations. Reaches are studied semi-independently as each is expected to function in a manner that is at least slightly different from adjoining reaches. This method allows for a meaningful characterization of a watercourse as the aggregate of reaches, or an understanding of a particular reach, for example, as it relates to a proposed activity. Reaches are typically delineated based on changes in the following:

- Channel planform
- Channel gradient
- Physiography
- Land cover (land use or vegetation)
- Flow, due to tributary inputs
- Soil type and surficial geology
- Historical channel modifications

Reach delineation follows scientifically defensible methodology proposed by Montgomery and Buffington (1997), the Toronto and Region Conservation Authority (2004) and others. Several watercourse reaches were delineated within the immediate zone of impact associated with each SWM facility based on a desktop assessment of available data (e.g., MNRF stream layer, surficial geology, historical and recent aerial photographs, topographic data.

Reach delineation was adopted and extrapolated from existing reach mapping provided by GEI Consultants (2022). A total of three reaches were identified within the subject property with an additional two reaches existing downstream along the receiving watercourse. The reaches within the subject property are classified as headwater drainage features, while the two downstream reaches are defined channels. Reach mapping is provided in **Appendix B**, for reference.

3.2 General Reach Observations

A site visit was completed by GEO Morphix Ltd. on July 27, 2022, to document existing channel conditions along the receiving watercourse, downstream of the proposed SWM outlets. Photographs of site conditions are provided in **Appendix C** and field observations are included in **Appendix D**, for reference.

The site visits included the following activities and reach observations:

- Habitat sketch maps based on Newson and Newson (2000) outlining channel substrate, flow patterns, geomorphological units (e.g., riffle, run, pool), and riparian vegetation for the extent of each reach assessed
- Descriptions of riparian conditions
- Documentation of culvert crossing conditions
- Estimates of bankfull channel dimensions
- Bed and bank material composition and structure
- Observations of erosion, scour or deposition
- Collection of photographs to document the watercourses, riparian areas and/or valley, surrounding land use, and channel disturbances such as crossing structures
- Completion of rapid channel assessments following the Rapid Geomorphological Assessment (RGA) (MOE, 2003; VANR, 2007) and Rapid Stream Assessment Technique (RSAT) (Galli, 1996) methodologies

General channel characteristics for all assessed reaches are summarized below in **Table 1**. Reaches **H1S1A** and **H2S1** were excluded from the observations, as they are not within the zone of impact associated with the SWM flows and are consequently irrelevant to the erosion assessment.

Reach Name	Avg. Bankfull Width (m)	Avg. Bankfull Depth (m)	Riffle Substrate	Pool Substrate	Dominant Riparian Condition	Notes
H1S1	0.91	0.17	Clay/silt, trace sand	Clay/silt, trace sand	Continuous grasses, occasional trees, cattails	 Grassy swale drainage feature with limited channel definition Minimal geomorphic activity observed Extensive cattail and grass encroachment Flows exit through stable culvert @ d/s end, 0.90 m diameter Channel dry during assessment

Table 1: General Reach Observation Summary

Reach Name	Avg. Bankfull Width (m)	Avg. Bankfull Depth (m)	Riffle Substrate	Pool Substrate	Dominant Riparian Condition	Notes
H1S2	1.53	0.31	Clay/silt, trace sand	Clay/silt, trace sand	Grasses, cattails, fragmented trees	 Straightened/modified feature – roadside ditch Intermittent channel definition Minimal geomorphic activity Heavy cattail encroachment
H1S3	1.61	0.39	Clay/silt, sand, gravel	Clay/silt, trace sand	Grasses, trees, cattails	 Bank erosion and exposed bank material prevalent Exposed length of pipe and wiring observed Straightened in upstream extent with some cobble armouring

Reach **H1S1** is an unconfined and relatively poorly defined channel that flows east through the subject lands. Minimal geomorphic activity was observed throughout the entire length of the reach. The riparian zone is characterized by extensive cattails and grasses, which encroach upon the channel bed frequently. The bed and bank materials are generally consistent with one another and are comprised by silt and clay with trace amounts of sand. The average bankfull width and depth are 0.91 m and 0.17 m, respectively. Flows exit the reach through a stable 0.90 m diameter culvert that passes beneath Homestead Dr and Upper James St. The channel was dry during the time of assessment.

Reach **H1S2** begins on the east side of Upper James St and flows north along the side of the road before veering to the east. The channel here is similarly poorly defined in areas but exhibits occasional sections of defined channel. The reach was likely straightened and modified previously as part of the road works. As such, minimal ongoing geomorphic activity was noted throughout the reach. Much of the reach is encroached heavily by cattails, which also occupy the majority of the riparian zone. Minor iron staining was observed and provides evidence of groundwater inputs. The average bankfull width and depth are 1.63 m and 0.31 m, respectively. Flows exit the reach through a small culvert that directs flows beneath a service road associated with the adjacent sod farm.

Reach **H1S3** is an approximately 95 m length of channel that flows northeast towards Willow Valley Golf Course. Flows from **H1S3** exit into an east-flowing lower-order tributary of Twenty Mile Creek. The channel within **H1S3** is constricted by two paved lots associated with the adjacent sod farm and exhibits a meandering planform that frequently contacts and erodes the bounding valley walls. Bed materials range from loose, silty clay deposits within pools to gravels within the riffles. Banks are comprised of a firm silty loam, which is increasingly compact towards the toe of the bank slopes. Riparian vegetation is fairly limited and consists of grasses, cattails, and occasional mature trees. The average bankfull width and depth are 1.61 m and 0.39 m, respectively. Flows during the day of assessment were present, but mostly imperceptible.

3.3 Rapid Field Assessments

Channel stability and susceptibility to erosion were objectively assessed through the application of the Ontario Ministry of the Environment (MOE; 2003) Rapid Geomorphic Assessment (RGA) technique. The RGA evaluates degradation, aggradation, widening, and planimetric form adjustment at the reach scale. The purpose of the RGA is to produce a score, or stability index,

which evaluates the degree to which a stream has departed from its equilibrium condition. A stream with a score of less than 0.20 is in regime, indicating minimal changes to its shape or processes over time. A score of 0.21 to 0.40 indicates that a stream is in transition or stress and is experiencing major changes to process and form outside the natural range of variability. A score of greater than 0.41 indicates that a stream is in extreme adjustment, exhibiting a new stream type, or in the process of adjusting to a new equilibrium (MOE, 2003; VANR, 2007).

The Rapid Stream Assessment Technique (RSAT) was also employed to provide a broader view of the system and consider the ecological functioning of the watercourse (Galli, 1996). Observations were made of channel stability, channel scouring or sediment deposition, instream and riparian habitats, and water quality. The RSAT score ranks the channel as maintaining a poor (<13), fair (13-24), good (25-34), or excellent (35-42) degree of stream health.

The reaches were also classified according to the Downs (1995) Model of Channel Evolution and the River Styles Framework (Brierley and Fryirs, 2005). The Downs (1995) model describes successional stages of a channel as a result of a perturbation, namely hydromodification. Understanding the current stage of the system is beneficial as this allows one to predict how the channel will continue to evolve or respond to an alteration to the system. The River Styles Framework provides a geomorphological approach to examining river character, behaviour, condition, and recovery potential.

Rapid assessments were completed during the site visit on July 27, 2022. Photographs of channel conditions for all reaches are provided in **Appendix C** and field observations are included in **Appendix D**, for reference. **Table 2**, below, summarizes the results of the rapid field assessments.

Reach Name	RGA Score	Dominant Process	RSAT Score	Downs Model Classification	River Styles Framework
H1S1	0.19 "In Regime"	Planimetric Adjustment	n/a – dry channel	S - Stable	Suspended load meandering/ anastomosing
H1S2	0.19 "In Regime"	Planimetric Adjustment	23 "Fair"	R - Recovering	Suspended load straight
H1S3	0.26 "In Transition/Stress"	Aggradation	25 "Good″	R - Recovering	Mixed load meandering

Table 2: Reach Classification Summary

Reach **H1S1** scored 0.19 on the rapid geomorphic assessment, indicting stable channel conditions. Some level of planimetric adjustment was observed, as evidenced by the multiple threaded channel and presence of chutes. The RSAT was not applicable to reach **H1S1**, as the entire length of channel was dry during the time of assessment. The channel was classified as stable under the Downs (1995) model, and was characterized as a suspended load-dominated meandering and anastomosing channel under the River Styles Framework (Brierley and Fryirs, 2005). Similar to reach **H1S1**, reach **H1S2** scored 0.19 on the RGA with planimetric adjustment identified as the dominant geomorphic process. The RSAT score was 23, indicating fair conditions of channel stability and physical instream habitat. Riparian conditions were a limiting factor regarding the RSAT score. The channel was classified as a recovering channel under the Downs (1995) model, as the channel was previously straightened and is currently redeveloping a meandering planform. The reach was classified as a suspended load-dominated straight channel.

Reach **H1S3** scored 0.26 on the RGA, indicating a channel currently in transition or stress and consequently experiencing non-natural changes to its forms and processes. The dominant process was identified as aggradation, but evidence of channel widening and degradation was also present. The reach has a good level of stream habitat availability and channel stability, as the RSAT score was 25. Similar to reach **H1S2**, reach **H1S3** was classified as a recovering channel under the Downs (1995) model. The reach was classified as a mixed load meandering channel under the River Styles Framework (Brierley and Fryirs, 2005).

3.4 Detailed Geomorphological Assessment

A detailed geomorphological assessment was completed for reach **H1S3** during the site visit on July 27, 2022. This assessment provided bankfull channel characteristics, including cross-sectional geometry and hydraulics, for the purpose of defining the erosion threshold. Reach **H1S3** was selected based on field observations, as confirmed by both the RGA and RSAT, which showed this channel was most susceptible to erosion. Representative cross sections were surveyed, and a modified Wolman (1954) pebble count was completed, where applicable, to characterize the bed materials. Sediment sampled for bank materials was reviewed and analyzed. A longitudinal survey of the bed was also completed to determine slope. Photographs of channel conditions are provided in **Appendix C** and a comprehensive summary of the channel measurements is also presented in **Table 3**, within **Section 4.2**.

4 Erosion Threshold Assessment

Erosion thresholds are used to determine the magnitude of flow required to potentially entrain and transport bed and/or bank material. As such, they are used to inform erosion mitigation strategies in channels influenced by conceptual flow and stormwater management plans. Erosion thresholds were modelled from detailed field observations of reach **H1S3**. This reach was selected for the assessment, as it was determined to be the most erosion-sensitive reach within the immediate zone of impact associated with the SWM outlets within the development. The erosion threshold is the theoretical point, typically expressed as a critical discharge or shear stress, at which entrainment of sediment would occur based on bed and bank materials. Due to variability between bed and bank composition and structure, erosion thresholds are determined for both bed and bank materials. The lower of the bed and bank erosion thresholds is adopted, as it provides the more conservative and limiting estimate.

4.1 Methodology

Threshold targets are determined using different methods that are dependent on channel and sediment characteristics. For example, thresholds for non-cohesive sediments are commonly estimated using a shear stress approach, similar to that of Miller et al. (1977), which is based on a modified Shield's curve. A velocity approach could also be applied. For cohesive materials, a method such as that described by Komar (1987), or empirically derived values such as those compiled by Fischenich (2001), Chow (1959) or Julien (1994), could be applied.

An erosion threshold is quantified based on the bed and bank materials and local channel geometry, in the form of a critical discharge. Theoretically, above this discharge, entrainment and transport of sediment can occur. To determine this discharge, the velocity, U, or Shear Stress, t, is calculated at various depths for a representative cross section until the average velocity or shear stress in slightly exceeds the critical threshold of the bed material. The velocity is determined using a Manning's approach, where the Manning's n value is visually estimated through a method described by Acrement and Schneider (1989) or calculated using the Limerino (1970) approach. A Manning's n value of 0.042 was used for the assessment. The velocity is mathematically represented as:

$$U = \frac{1}{n} d^{2/3} S^{1/2}$$

where, d is depth of water, S is channel slope, and n is the Manning's roughness.

The shear stress is determined using the depth-slope product, which can be applied to the bed of open channels containing fluid undergoing steady flows. The shear stress is mathematically represented as:

$$t = d\rho g S_{bed}$$
[Eq. 2]

Where, t is shear stress, d is the water depth, ρ is water density, g is acceleration due to gravity, and S_{bed} is the channel bed slope.

Because only 75% of bed shear stress and velocities applies to channel banks in uniform cross sections (Chow, 1959), the erosion threshold is scaled appropriately for these materials.

4.2 Results

Analysis of the bank materials within reach **H1S3** showed they were composed of a compact silty loam using the criteria of Fischenich (2001). Based on the type of material observed, a critical velocity approach was taken using the criteria of Fischenich (2001) for the silty loam bank material, a somewhat cohesive material with high silt and clay content. This material is estimated to have a critical velocity of 0.53 m/s, which was used to determine the material's threshold discharge, the point at which sediment entrainment begins to occur. In this instance, the critical discharge for the bank materials was predicted to be 0.145 m^3 /s. A Manning's roughness value of 0.046 was adopted for the critical discharge calculations, based on the framework described by Acrement and Schneider (1989).

The bed material within reach **H1S3** ranged from loose silty clays to large gravels. The D₈₄ grain size of the bed materials within reach **H1S3** were determined to be pebble-sized gravels (12.7 mm) according to the Wentworth scale (Wentworth, 1922), and represents the dominant materials found within the riffles. Using the methods described by Miller et al. (1977), this material is predicted to have a permissible velocity of 0.64 m/s. The loose silty clays that occupied the remaining pool and run geomorphic units were classified as alluvial silt under the framework described by Fischenich (2001), as has a permissible velocity of 0.61 m/s. The 0.61 m/s value was selected as the limiting criteria for the bed material and was used to determine the critical discharge, which in this case was 0.078 m³/s.

The results of the erosion threshold assessment are provided in **Table 3** below. The threshold was modelled from data collected at the receiving reach that is most sensitive to erosion, **H1S3**, and is considered conservative. The final, modelled erosion threshold is the lesser of the bed and bank materials, and in this instance was determined to be 0.078 m³/s for the bed materials.

[Eq. 1]

Table 3: Reach H1S3 detailed assessment and erosion t	nreshold analysis results								
Channel navamater	Results by Reach								
Channel parameter	H1S3								
Bankfull Conditions									
Average bankfull width (m)	1.61								
Average bankfull depth (m)	0.24								
Channel gradient (%)	1.58								
D ₅₀ (mm)	<2.0								
D ₈₄ (mm)	12.65								
Manning's n roughness coefficient	0.046								
Bankfull discharge (m ³ /s)	0.35								
Bankfull velocity (m/s)	0.92								
Channel Bed Erosion Threshold									
Bed Material	Alluvial Silt (Fischenich, 2001)								
Critical velocity at the bed (m/s)	0.61								
Apparent shear stress acting on bed (N/m^2)	20.87								
Critical discharge (m ³ /s)	0.078								
Channel Banks Erosion Thres	hold								
Bank Material	Silty Loam (Fischenich, 2001)								
Critical velocity at the banks (m/s)	0.53								
Apparent shear stress acting on banks (N/m ²)	19.09								
Critical discharge (m ³ /s)	0.145								
Limiting critical discharge (m ³ /s)	0.078								
Unitary erosion threshold* (m ³ /s/ha)	0.0016								

* Determined using a 48.2 ha drainage area obtained from the Ontario Watershed Information Tool (OWIT)

5 **Preliminary Erosion Exceedance Analysis**

In support of the proposed Stormwater Management (SWM) plan, an erosion threshold analysis was completed in association with the Three Mile Creek tributary. An outlet is proposed in the northeast corner of the subject property to drain a proposed bioswale and will release flows to H1S1 approximately 125 m west of Homestead Drive. Downstream of the subject property, flows from this tributary are conveyed in laterally confined open channels, including reach H1S1. Ultimately, flows drain downstream into Three Mile Creek, a headwater tributary to Twenty Mile Creek. To support definition of erosion control criteria for the proposed outlet, an erosion threshold assessment was completed for the receiving tributary (reach H1S1).

Using the results of the erosion threshold analysis and hydrological modelling provided by Odan Detech (2023) for pre-development conditions and three (3) successive iterations of postdevelopment conditions, additional analyses regarding the impacts of SWM controls on potential erosion within the watercourse were completed with our in-house Erosion Exceedance Model, based on four erosion exceedance indices:

- 1) Cumulative time of exceedance
- 2) Number of exceedance events
- 3) Cumulative effective discharge and volume
- 4) Cumulative effective work index (i.e. cumulative effective stream power)

These indices have been applied elsewhere in numerous jurisdictions, such as Conservation Halton and Toronto and Region Conservation Authority and have been widely accepted by Ontario Conservation Authorities. They provide an evaluation of the number, duration, and magnitude of exceedance events. We note that the most relevant indicator is the cumulative effective work index, as this value reflects both the duration and magnitude of erosion exceedance events.

Time of exceedance, number of exceedances, and cumulative effective discharge and volume can be calculated from the discharge record and established critical discharge. The cumulative time of exceedance is simply the summed duration of time where discharge exceeds the established erosion threshold, and the number of exceedances is the count of erosion exceedance events throughout the discharge record. The cumulative effective discharge represents the average magnitude of discharge exceeding the erosion threshold during a given erosion event, whereas the cumulative effective volume represents the total discharge volume that exceeds the erosion threshold throughout the modelled discharge record.

For more relevant indicators, namely the cumulative effective work index, hydraulic information is required. Our model applies the discharge to a characteristic cross-section. Using a Manning's approach, the discharge at each time step in the continuous hydrological model is converted into a velocity, depth of flow, shear stress, and/or stream power. These parameters are calculated based on field measurements of slope, cross-section, and channel roughness. This provides analysis that is appropriate to the specific site conditions.

The post- and pre-development hydrological modelling reflects changes to the hydrological regime resulting from SWM measures being implemented within the catchment. Flow data for reach **H1S1** was provided by Odan Detech (2023) in 5-minute increments for the 25 mm design storm. The hydrological modeling was analyzed to calculate the aforementioned erosion indices and identify changes in the erosive potential within **H1S1** following development. The post- and pre-development hydrograph, overlain with the respective erosion threshold and bankfull discharge, is provided in **Appendix F**, for reference.

The simulation used an erosion threshold value of 0.022 m³/s for reach **H1S1**. This erosion threshold was estimated by scaling that of **H1S3**, determined through the Erosion Threshold Assessment detailed above (**Table 3**). The erosion threshold for **H1S3** is 0.078 m³/s for a drainage area of 48.2 ha, thus the unitary erosion value is 0.0016 m³/s/ha. Based on a drainage area of 13.80 ha for **H1S1**, taken from the Functional Servicing Report prepared by Odan Detech (2023), multiplied by the previously determined unitary erosion value of 0.0016 m³/s/ha, the erosion threshold is estimated to be 0.022 m³/s.

5.1 Methods

To calculate erosion indices, both velocity and shear stress were calculated at each time step. Through an iterative process, water depth and velocity were calculated for each discharge passing through a representative cross-section. The cross-section is divided into floodplain and bankfull sections. The cross-section is further broken into panels. Velocity, U, is calculated for each panel using the Manning's approach. This is a conservative approach as it allows dissipation of flood energy in the floodplain.

The total discharge, Q_T at each time step is based on the summation of the discharge of all panels, Q_i , such that:

$$Q_{T=\sum Q_i}$$
 [Eq. 3]

 Q_i is discharge through a panel (which is set at 10 percent of the cross-section). Q_i is defined as:

$$Q_i = U_i w_i d_i$$
 [Eq. 4]

where, w_i and d_i are width and depth for each panel. The discharge for each panel was then summed to give a total discharge. This is more accurate than using average cross-sectional dimensions of a simple trapezoidal channel, as the bed is usually irregular, and a panel approach more accurately represents the true cross-sectional area.

For each event, the discharge is converted into a maximum depth and average velocity. The maximum depth is used to calculate a maximum bed shear stress, $\tau_{o_{max}}$ based on:

$$\tau_{o_{\max}} = d_{\max} \rho g S_{\text{bed}}$$
[Eq.

where, d_{max} is the maximum water depth, ρ is water density, g is acceleration due to gravity, and S_{bed} is the channel bed slope.

Cumulative total work, ω_{tot} is defined as:

$$\omega_{\text{tot}} = \sum \tau_{0_{\text{max}}} . U_{\text{avg}} . \Delta t$$
[Eq. 6]

where, U_{avg} is average velocity (Q_{tot}/A_{tot} , where A_{tot} is wetted area), while cumulative effective work index (ω_{eff}) is defined by:

$$\omega_{\text{eff}} = \sum \tau - \tau_{cr} U \Delta t, \omega < 0 = 0$$
[Eq. 7]

where, τ_{cr} is the critical shear stress.

Time of exceedance t_{ex} defined as:

$$t_{\text{ex}} = \sum \Delta t \text{ for } (Q_T > Q_{\text{threshold}})$$
 [Eq. 8]

where, $Q_{\text{threshold}}$ is the discharge at the erosion threshold.

The cumulative effective discharge volume (CEV) is defined as:

$$CEV = \sum Q \text{ (for } Q > Q_{threshold})$$
[Eq. 9]

Similarly, the cumulative effective discharge (CED) is defined as:

$$CED = CEV/t_{ex}$$
 [Eq. 10]

5.2 Results

The post- to pre-development hydrograph is included in Appendix F. **Table 4** provides the results of the assessment based on the latest hydrographs for the 25 mm design storm provided by Odan Detech (2023).

51

Table 4: Reach H1S1 post- to pre-development erosion exceedance analysisresults for latest hydrological modelling iteration

Simu	lation	CED (m³/s)	ထ _{eff} (N/m²)	t _{ex} (hrs)	# Of Exceedances	
Q _{crit} :	(PRE)	258.90	14.27	2.67	1.00	
0.022m ³ /s	(POST)	66.30	5.342	2.50	1.00	
25 mm	Change (%)	-74.39%	-62.57%	-6.25%	0.00%	

The cumulative effective discharge (CED) represents the average magnitude of flow exceeding the threshold during a given erosion event. In this instance, the CED decreased by 74.39% by the third iteration of post-development conditions. The cumulative effective work index (ω_{eff}), which reflects both the duration and severity of erosion events, is predicted to decrease by 62.57% in the proposed post-development conditions. The cumulative time of exceedance (t_{ex}), which represents the cumulative time for which flow exceeds the established erosion threshold, is predicted to decrease by 6.25% in the proposed post-development conditions. The number of exceedances within the modelled hydrological record is predicted to remain the same at one (1) exceedance, indicating no change in the frequency of occurrence for erosion events.

Taken as a whole, the results of the post- to pre-development erosion exceedance predict a general reduction in erosion potential for the 25 mm design storm within reach **H1S1** following completion of development activities. The 25 mm design storm captures the majority of rain events and would produce flow conditions near bankfull, or the channel forming flow, thus it is an appropriate event with which to evaluate changes in erosion potential in a receiving watercourse. The expected geomorphic response for the 25 mm design storm within receiving reach **H1S1** is characterized by less severe erosion events. Such reductions in erosion potential are beneficial for streams with urbanizing catchments, as it provides a level of resilience to future developments and their associated hydrological effects. From a fluvial geomorphic perspective, the proposed SWM plans adequately address erosion mitigation concerns.

6 Summary and Conclusions

GEO Morphix Ltd. was retained by Fengate Homestead Holdings LP to complete a fluvial geomorphic and erosion threshold assessment in support of proposed development at 3054 Homestead Dr, Hamilton, Ontario. The assessment included a review of previous studies, completion of a historical assessment, rapid and detailed field reconnaissance, and an erosion threshold assessment and erosion exceedance analysis.

Activities completed for the assessment included a detailed desktop review of available geology, topography, drainage area characteristics, and watercourse reach delineation. General channel observations, rapid stream assessments, and rapid geomorphological assessments for all reaches downstream of the proposed SWM outlet were completed during a site visit on July 27, 2022. These assessments documented existing channel and culvert crossing characteristics and assessed relative erosion-sensitivity of each channel reach. The results of the rapid assessments informed the location of the detailed geomorphological assessment, which was completed at reach **H1S3** during the same field visit.

The results of the detailed geomorphological assessment provided information relevant to the erosion threshold analysis. An erosion threshold, expressed as a critical discharge was determined

for both the bed and bank materials within the most erosion-sensitive reach (i.e., **H1S3**). The reach was erosion-limited by the loose silty bed material that occupied most pool and run morphological units within the reach, and the resulting erosion threshold was determined to be 0.078 m^3 /s. Using the Ontario Watershed Information Tool, a 48.2 ha pre-development drainage area was determined and used to calculate the unitary erosion threshold of 0.0016 m^3 /s/ha. This unitary value provides guidance for defining SWM release rates and developing an appropriate erosion mitigation strategy for the 3054 Homestead Drive development.

The results of the erosion threshold analysis provided the input necessary for an erosion exceedance analysis. Hydrographs for a 25 mm design storm were provided for reach **H1S1**. Since the erosion threshold value of 0.078 m³/s was determined for reach **H1S3**, it was necessary to scale the value to derive an erosion threshold for reach **H1S1** upstream. A drainage area of 13.80 ha for reach **H1S1**, taken from the Functional Servicing Report prepared by Odan Detech (2023), and the unitary erosion threshold of $0.0016m^3/s/ha$ were used to calculate an erosion threshold of $0.022 m^3/s$. The erosion exceedance modelling results indicate that the proposed stormwater management plan adequately mitigates the potential for excess erosion for the 25 mm design storm within the receiving watercourse following development.

We trust this report meets your requirements at the time. Should you have any questions please contact the undersigned.

Respectfully submitted,

Paul Villard Ph.D., P.Geo., CAN-CISEC, EP, CERP Director, Principal Geomorphologist

Kelsey Serviss, M.Sc. Environmental Field Technician

7 References

Acrement, G.J. and Schneider, V.R. 1989. Guide for Selecting Manning's Roughness Coefficients for Natural Channels and Floodplains. U.S. Geological Survey Water-Supply Paper 2339. United States Government Printing Office.

Brierley, G. J. and Fryirs, K. A. 2005. Geomorphology and River Management: Applications of the River Styles Framework. Blackwell Publishing, Oxford, UK, 398pp. ISBN 1-4051-1516-5.

Chapman, L.J., and Putnam, D.F. 1984: Physiography of Southern Ontario, Second Edition. Ontario Research Foundation, Toronto, ON.

Chow, V.T. 1959. Open channel hydraulics. McGraw Hill, New York.

Downs, P.W. 1995. Estimating the probability of river channel adjustment. Earth Surface Processes and Landforms, 20: 687-705.

Durley, J. 2006. Twenty Mile Creek Watershed Plan. Niagara Peninsula Conservation Authority.

Fischenich, C. 2001. Stability Thresholds for Stream Restoration Materials. EMRRP Technical Notes Collection (ERDC TN-EMRRP-SR-29), U.S. Army Engineer Research and Development Center, Vicksburg, MS.

Galli, J. 1996. Rapid Stream Assessment Technique, Field Methods. Metropolitan Washington Council of Governments.

Julien, P. Y. 1994. Erosion and Sedimentation (1st ed.). Cambridge University Press.

Knighton, D. 1998. Fluvial forms and processes: A new perspective. Hodder Education, London, UK.

Komar, P.D. 1987. Selective gravel entrainment and the empirical evaluation of flow competence. Sedimentology, 34: 1165-1176.

Limerinos, J.T., 1970. Determination of the Manning coefficient from measured bed roughness in natural channels. United States Geological Survey Water-Supply Paper 1898B.

Miller, M.C., McCave, I.N. and Komar, P.D. 1977. Threshold of sediment erosion under unidirectional currents. Sedimentology, 24: 507-527.

Ministry of Environment (MOE). 2003. Ontario Ministry of Environment. Stormwater Management Guidelines.

Newson, M. D., Newson, C. L., and Ne, T. 2000. Geomorphology, ecology and river channel habitat: mesoscale approaches to basin-scale challenges. Progress in Physical Geography, 2: 195–217.

Niagara Peninsula Conservation Authority (NPCA). 2011. Upper Welland River Watershed Plan.

Odan/Detech Group Inc. (2023). Proposed Industrial Development – 3054 Homestead Drive, Hamilton: Functional Servicing Report.

Ontario Geological Survey (OGS). 2010. Physiography of Southern Ontario.

Vermont Agency of Natural Resources (VANR). 2007. Step 7: Rapid Geomorphic Assessment (RGA). Phase 2 Stream Geomorphic Assessment.

Wentworth, C. (1922). A Scale of Grade and Class Terms for Clastic Sediments. The Journal of Geology, 30(5), 377-392.

Wolman, M.G. 1954. A method of sampling coarse riverbed material. Transactions of the American Geophysical Union, 35 (6): 951 – 956.

Appendix A Historical Aerial Photographs

Year: 1963 Scale: 1:15000 Yellow Marker: Intersection of Airport Road and Homestead Drive

Location: Hamilton, ON Year: 2012 Scale: N/A (orthoimagery) Yellow Marker: Intersection of Airport Road and Homestead Drive

Scale: N/A (orthoimagery) Yellow Marker: Intersection of Airport Road and Homestead Drive

Location: Hamilton, ON Year: 2018 Scale: N/A (orthoimagery) Yellow Marker: Intersection of Airport Road and Homestead Drive

Location: Hamilton, ON Year: 2021 Scale: N/A (orthoimagery) Yellow Marker: Intersection of Airport Road and Homestead Drive

Appendix B Reach Delineation

Legend

- / Reach Break and ID
 - ~ Watercourse
 - --- Detailed Assessment Location

3054 Homestead Drive Erosion Threshold Assessment

, Imagery: Google Earth, 2021. Watercourse: MNRF, 2020/GEO Morphix Ltd., 2022. Reach Break and ID, Detailed Assessment Location: GEO Morphix Ltd. September 2022. PN22062. Drawn By: M.O., J.T.

Appendix C Photographic Record

Appendix D Field Observations

GEO MORPHIX Gennaghebery Barn Seame

General Site Characteristics

Project Code: 220163

Date:		2022-07	-27	Stream/Reach:										1844 HIS1								
Weat	her:			Lo	catio	on:							1	1t	.1	to	0.6	5				
Field	Staff:	JT MK		Wa	Watershed/Subwatershed: 20 Mile Crk																	
Featu	res			Site Sketch:																		
	Reach break							2	1	W		1										
	Cross-section						12	V		1.		N	1									
	Flow direction						1			1	ĸ		1									
	Riffle					1		1	1	V		11	1								N	
	Pool					Ĩ	4	/	V	ľ.,		K	V	N						2		
	Medial bar						V		1		1			-			10	14	n.	15		
mmmm	Eroded bank						V	1	N.		W	1		P	1	1ª			1	-		
	Undercut bank				1			4		V			5	V	1	1						
XXXXX	Rip rap/stabilizatior	/gabion					V	14	1		-	V		1	6					2		
	Leaning tree						1	V.	V	1	1		V	11		1						
XX	Fence				1	d		1	1			f	1	1	У	1						
	Culvert/outfall							1	V		1	V			1	V	1	Val				
\bigcirc	Swamp/wetland						_	_	1	1	1	91	ſ		1	N	×	73				
WWW	Grasses					13	_				1	M	17	-	14			De				
E.J	Tree						_			1				1	r	- 3	1	1				
	Instream log/tree													Y	10		ý.		ø			
***	Woody debris						10							1	V		K		1			
X	Station location									18				1	1	1	(10					-
(V)	Vegetated island							1								Ĺ	2		P			
Flow T	уре											a(>		V		(V			
H1	Standing water										Nº.	hal	0	5	1		12			4	1	C.
H2	Scarcely perceptible	flow								1	jue l	1 has	las	1		1	1		/		200	ne
H3	Smooth surface flov	V						-	1	1	8	07	>	>H	1			1				
H4	Upwelling						1		5		F				1	4	10	1				
H5	Rippled		C	-6	0	38	-67	3(2	0	3	0	0	1			5	-		×	1	1
H6	Unbroken standing	wave			e p		r	1	Ľ	1	2	17	2	11	n			1	/		2	
H7	Broken standing wa	ve							4)	4	5	p .	K	2			X				
H8	Chute													1				1		2		
H9	Free fall					1	-	N							15				V			
Substr	ate					1						0	2				5	1	V	V	X.	
S1	Silt	S6 Small boul	der		1	11		-									1	1	N/	Y	2	
S2	Sand	S7 Large boul	der		- 6.												2		V	V	1	
\$3	Gravel	S8 Bimodal												1	-					1	15	1
S 4	Small cobble	S9 Bedrock/ti												1	1	K				V	V	11
S 5	Large cobble											1			1							51
Other															2						K	K
вм	Benchmark	EP Erosion pir		-						and a state of the	-	1		-			- Aria				+	R
BS	Backsight	RB Rebar																				
DS	Downstream	US Upstream		-	-																	
WDJ	Woody debris jam																			-		
vwc	Valley wall contact														Sca	ale:						
BOS	Bottom of slope	FP Flood plain		Ad	ditio	onal	Not	es:														
TOS	Top of slope	KP Knick poin	:																			

Pirateristics Pirateristics Inacteristics Inacteristics Income Inacteristics Incomo Inacteristics Incol <th>CEO MORPHIX roject Code:</th> <th>HISI</th> <th>3054 Howestead D.</th> <th>ershed: Twenty Mile are k</th> <th></th> <th>v Type 3 Groundwater Evidence:</th> <th>istream Vegetation Water Quality</th> <th>e8) Coverage of Reach (%) 50 Odour (Table 16)</th> <th>tbris Density of WD: [V/G] : in Cutbank [Low WDJ/50m: Turbidity (Table 17) [V/A]</th> <th>sent 🗆 High</th> <th></th> <th>Clay/Silt Sand Gravel Cobble Boulder Parent Rootlets</th> <th>ffle Substrate 🕼 🛛 🗂 🗍</th> <th>ool Substrate 🛛 🗌 🗌 🗌</th> <th>k Material 🕅 🗆 🗆 🗆</th> <th>Bank Angle Bank Erosion Bank Angle Bank Erosion RO-30 R<5% RO-30 RO-30 R RO-30 R</th>	CEO MORPHIX roject Code:	HISI	3054 Howestead D.	ershed: Twenty Mile are k		v Type 3 Groundwater Evidence:	istream Vegetation Water Quality	e8) Coverage of Reach (%) 50 Odour (Table 16)	tbris Density of WD: [V/G] : in Cutbank [Low WDJ/50m: Turbidity (Table 17) [V/A]	sent 🗆 High		Clay/Silt Sand Gravel Cobble Boulder Parent Rootlets	ffle Substrate 🕼 🛛 🗂 🗍	ool Substrate 🛛 🗌 🗌 🗌	k Material 🕅 🗆 🗆 🗆	Bank Angle Bank Erosion Bank Angle Bank Erosion RO-30 R<5% RO-30 RO-30 R RO-30 R
Iracteristics Iracteristics Stream/Readit: UTM (Downstruct) Stream/Readit: UTM (Downstruct) Valley Type Channel Type Occation: Occation: None Occation: Downstruct Channel Type None Occation: Provester Classification None Occation: Sinuosity (Degree) Gradient Sinuosity (Degree) Gradient Type of Baak Failure Downstruct Oo Type of Baak Failure Do Oo	GEO Project Code:	HISI	3054 Howestead 1	owatershed: Twenty Mile coos	eam)	Flow Type 3 Groundwater Evidence:	tic/Instream Vegetation Water Quali	(Table8) Coverage of Reach (%)	IY Debris Density of WD: sent in Cutbank D Low WDJ/50m: sent in Channel D Moderate A	t Present		Clay/Silt Sand Gravel Cobble	Riffle Substrate 🗷 🗆	Pool Substrate 🛛 🗌	Bank Material 🛛 🗆 🗆	Bank Angle Bank Erosion Bank Angle Bank Erosion 20 - 30 2 5 5 30% 30 - 60 30 - 60% 1 30 - 60 30 - 60% 1 30 - 60 - 100% 1 1 plitude: Null: ple poorly defined chennels poorly defined chennels ebserved-sweale
	racteristics	7022-07-27 Stream/Reach:	Location:	J T MK Watershed/Sub	UTM (Downstre	Valley Type Channel Type L (Table 2) (Table 3) (Table 4)	Aquati	overage: ^{Channel} Age Class (yrs): Encroachment: Type (1	None 1-4 又 Immature (<5)	⊠ Not	tics	Sinuosity (Degree) Gradient Number of Channels	(Table 10) (Table 11) (Table 12) (Table 12)	Type of Bank Failure Downs's Classification	(Table 14) (Table 15) 5	0.60 1.00 1.12 Wetted Width (m) 1 0.33 0.02 0.25 Wetted Depth (m) 1 n n/a % Riffles: 1 1 n n/a % Riffles: 1 1 n n/a % Pools: 1 1 n n/a % Pools: 1 1 n n/a 1 1 1 n n/a 1 1 1 n n n 1 1 n n n 1 1 n n n 1 1 n n n 1 1

Rapid Stream Assessment Technique

Project Code: 22063

Date:	2022-07-27	Stream/Reach:		HISI					
Weather:		Location:		MI Hope					
Field Staff:	JT MK	Watershed/Subwate	ershed:	20 mile creek					
Evaluation Category	Poor	Fair		Good	Excellent				
Channel	 < 50% of bank network stable Recent bank sloughing, slumping or failure frequently observed 	 50-70% of bank network stable Recent signs of bank sloughing, slumping or failure fairly common 	 71-80% stable Infreque sloughin failure 	of bank network ent signs of bank g, slumping or	 > 80% of bank network stable No evidence of bank sloughing, slumping or failure 				
	 Stream bend areas highly unstable Outer bank height 1.2 m above stream bank (2.1 m above stream bank for large mainstem areas) Bank overhang > 0.8-1.0 m 	 Stream bend areas unstable Outer bank height 0.9- 1.2 m above stream bank (1.5-2.1 m above stream bank for large mainstem areas) Bank overhang 0.8-0.9m 	 Stream I Outer ba m above 1.5 m at for large Bank ove 	bend areas stable ank height 0.6-0.9 e stream bank (1.2- pove stream bank mainstem areas) erhang 0.6-0.8 m	 Stream bend areas very stable Height < 0.6 m above stream (< 1.2 m above stream bank for large mainstem areas) Bank overhang < 0.6 m 				
Stability	 Young exposed tree roots abundant > 6 recent large tree falls per stream mile 	 Young exposed tree roots common 4-5 recent large tree falls per stream mile 	 Exposed predomin large, sn scarce 2-3 rece per streat 	tree roots nantly old and naller young roots nt large tree falls am mile	• Exposed tree roots old, large and woody • Generally 0-1 recent large tree falls per stream mile				
	 Bottom 1/3 of bank is highly erodible material Plant/soil matrix severely compromised 	 Bottom 1/3 of bank is generally highly erodible material Plant/soil matrix compromised 	• Bottom 1 generally plant/soi	 Bottom 1/3 of bank is generally highly resistant plant/soil matrix or material Bottom 1/3 of generally highly resistant plant/soil matrix 					
	 Channel cross-section is generally trapezoidally- shaped 	 Channel cross-section is generally trapezoidally- shaped 	Channel generally	cross-section is / V- or U-shaped	Channel cross-section is generally V- or U-shaped				
Point range	0 0 1 0 2	030405	06	07 28	□ 9 □ 10 □ 11				
	 > 75% embedded (> 85% embedded for large mainstem areas) 	 50-75% embedded (60- 85% embedded for large mainstem areas) 	• 25-49% 59% em mainster	embedded (35- bedded for large n areas)	Riffle embeddedness < 25% sand-silt (< 35% embedded for large mainstem areas)				
\langle	 Few, if any, deep pools Pool substrate composition >81% sand- silt 	 Low to moderate number of deep pools Pool substrate composition 60-80% sand-silt 	 Moderate pools Pool subs 30-59% 	e number of deep strate composition sand-silt	 High number of deep pools (> 61 cm deep) (> 122 cm deep for large mainstem areas) Pool substrate composition <30% sand-silt 				
Channel Scouring/ Sediment Deposition	 Streambed streak marks and/or "banana"-shaped sediment deposits common 	 Streambed streak marks and/or "banana"-shaped sediment deposits common 	 Streambound and/or "t sediment uncommon 	ed streak marks panana"-shaped deposits on	• Streambed streak marks and/or "banana"-shaped sediment deposits absent				
	 Fresh, large sand deposits very common in channel Moderate to heavy sand deposition along major portion of overbank area 	 Fresh, large sand deposits common in channel Small localized areas of fresh sand deposits along top of low banks 	 Fresh, lan uncommo Small loc fresh san top of lov 	rge sand deposits on in channel alized areas of d deposits along v banks	 Fresh, large sand deposits rare or absent from channel No evidence of fresh sediment deposition on overbank 				
	 Point bars present at most stream bends, moderate to large and unstable with high amount of fresh sand 	 Point bars common, moderate to large and unstable with high amount of fresh sand 	 Point bar well-vege armoured fresh san 	s small and stable, etated and/or d with little or no d	• Point bars few, small and stable, well-vegetated and/or armoured with little or no fresh sand				
Point range	0 0 1 0 2	0304	D	5 頁 6	0708				

Date:		Reach:	H151		Project Code:				
Evaluation Category	Poor	Fair		Go	bod		Excellent		
	• Wetted perimeter < 40% of bottom channel width (< 45% for large mainstem areas)	Wetted perime 60% of bottom width (45-65% mainstem area	ter 40- channel for large s)	Wetted perin of bottom ch (66-90% for mainstem ar	neter 61-85% annel width large eas)	 Wetted perimeter > 85% of bottom channel width 90% for large mainstem areas) 			
	 Dominated by one habitat type (usually runs) and by one velocity and depth condition (slow and shallow) (for large mainstem areas, few riffles present, runs and pools dominant, velocity and depth diversity low) 	 Few pools pres and runs domin Velocity and de generally slow shallow (for lar mainstem area and pools dom velocity and de diversity intern 	ent, riffles nant. epth and ge s, runs inant, epth nediate)	 Good mix be runs and poc Relatively div and depth of 	tween riffles, ols verse velocity flow	 Riffle habi Dive of fle fast, wate 	es, runs and pool tat present rse velocity and depth ow present (i.e., slow, shallow and deep er)		
Physical Instream	 Riffle substrate composition: predominantly gravel with high amount of sand ≤ 5% cobble 	 Riffle substrate composition: predominantly cobble, gravel 5-24% cobble 	small and sand	 Riffle substration: composition: gravel, cobblinaterial 25-49% cobblight 	ite good mix of e, and rubble ble	 Riffle substrate composition: cobble, gravel, rubble, boulder n with little sand > 50% cobble 			
Habitat	 Riffle depth < 10 cm for large mainstem areas 	Riffle depth 10 large mainsten	-15 cm for areas	 Riffle depth 1 large mainster 	15-20 cm for em areas	Riffle large	e depth > 20 cm for e mainstem areas		
	Large pools generally < 30 cm deep (< 61 cm for large mainstem areas) and devoid of overhead cover/structure	 Large pools ge 46 cm deep (6 for large mains areas) with litt overhead cover 	nerally 30- 1-91 cm tem e or no r/structure	 Large pools g cm deep (91 large mainste some overhe cover/structu 	generally 46-61 -122 cm for em areas) with ad ire	 Large pools generally > cm deep (> 122 cm for large mainstem areas) v good overhead cover/structure 			
	Extensive channel alteration and/or point bar formation/enlargement	 Moderate amou channel alterat moderate incre point bar formation/enla 	int of ion and/or ase in rgement	 Slight amour alteration and increase in p formation/en 	it of channel d/or slight oint bar largement	• No c signi form	hannel alteration or ficant point bar ation/enlargement		
(Riffle/Pool ratio 0.49:1 ; ≥1.51:1 	 Riffle/Pool ratio 0.69:1 ; 1.31-3 	0.5- 1.5:1	• Riffle/Pool ra ; 1.11-1.3:1	tio 0.7-0.89:1	• Riffle	e/Pool ratio 0.9-1.1:1		
	 Summer afternoon water temperature > 27°C 	Summer aftern temperature 24	oon water I-27°C	 Summer afte temperature 	rnoon water 20-24°C	 Sum temp 	mer afternoon water perature < 20°C		
Point range	0 0 1 0 2	030	4	□ 5	□ 6		0708		
n/a	 Substrate fouling level: High (> 50%) 	 Substrate foulin Moderate (21-5) 	ng level: 50%)	 Substrate for Very light (1) 	Iling level: 1-20%)	- Subs Rock	trate fouling level: underside (0-10%)		
Water Quality	 Brown colour TDS: > 150 mg/L 	 Grey colour TDS: 101-150 	mg/L	 Slightly grey TDS: 50-100 	colour mg/L	Clear TDS	r flow : < 50 mg/L		
Water Quanty	Objects visible to depth < 0.15m below surface	 Objects visible 0.15-0.5m belo 	to depth w surface	 Objects visib 0.5-1.0m bel 	le to depth ow surface	• Obje > 1.	cts visible to depth Om below surface		
	Moderate to strong organic odour	 Slight to model organic odour 	rate	 Slight organi 	c odour	NO O	dour		
Point range	00102	3	4	D 5	□ 6		⊠ 7 □ 8		
Riparian	Narrow riparian area of mostly non-woody vegetation	 Riparian area predominantly but with major gaps 	wooded localized	 Forested buffer generally > 31 m wide along major portion of both banks 		 Wide (> 60 m) mature forested buffer along bot banks 			
Conditions	Canopy coverage: <50% shading (30% for large mainstem areas)	 Canopy covera 60% shading (for large mains areas) 	ge: 50- 30-44% tem	 Canopy cover 60-79% shac for large mai 	rage: ling (45-59% nstem areas)	• Canc >80 large	ppy coverage: % shading (> 60% for e mainstem areas)		
Point range 🗆 0 🖏 1.		020	3	0405			0607		
Total overall s	score (0-42) =	Poor (<13)	F	air (13-24)	Good (25-3	34)	Excellent (>35)		

Completed by: ____ Checked by: ___

GEO	1	0	R	Ρ	Н	ŧ	х
-----	---	---	---	---	---	---	---

Rapid Geo	morp	hic Assessment	:	Project Co	ode: 2206	3		
Date:	20	22-07-2=	Stre	am/Reach:	71151	0.1	1.1	
Weather:			Wate	ershed/Subwatersh	ied: 20 M	10	act	
Field Staff:	1	ST MK	Loca	tion:	MEH	one		
Dracass		(Geomorpholo	gical Indicator		P	resent?	Factor
Process	No.	Description				Yes	No	Value
	1	Lobate bar					×	
	2	Coarse materials in	riffles embed	ded		-		1
Evidence of	3	Siltation in pools				×]
Aggradation	4	Medial bars					х	0.333
(AI)	5	Accretion on point b	ars				X]
	6	Poor longitudinal so	rting of bed i	materials			2]
	7	Deposition in the ov	erbank zone			x		
					Sum of indices =			
	1	Exposed bridge foot	ing(s)				×	
	2	Exposed sanitary / s	storm sewer	/ pipeline / etc.			×	1
	3	Elevated storm sew	er outfall(s)				×	
	4	Undermined gabion	baskets / co	ncrete aprons / etc.				
Evidence of	5	Scour pools downstr	ream of culve	erts / storm sewer ou	tlets	-		1
(DI)	6	Cut face on bar forn	ns				×	A
	7	Head cutting due to	knickpoint n	nigration			×	
	8	Terrace cut through	older bar m	aterial			×	
	9	Suspended armour	layer visible	in bank			×	
	10	Channel worn into u	indisturbed o	verburden / bedrock			×	-
					Sum of indices =			
	1	Fallen / leaning tree	es / fence pos	sts / etc.			X	
	2	Occurrence of large	organic debr	is		-	X	
	3	Exposed tree roots					X	
	4	Basal scour on insid	e meander b	ends			×	~
Evidence of Widening	5	Basal scour on both	sides of cha	nnel through riffle			×	
(WI)	6	Outflanked gabion b	oaskets / con	crete walls / etc.	_	-		0
	7	Length of basal scou	ur >50% thro	ough subject reach			X	
	8	Exposed length of p	reviously but	ried pipe / cable / etc			X]
	9	Fracture lines along	top of bank				X	
	10	Exposed building for	undation					
					Sum of indices =			
	1	Formation of chute(s)			X		
E. data a	2	Single thread chann	el to multiple	e channel		×		
EVIDENCE Of Planimetric	3	Evolution of pool-riff	fle form to lo	w bed relief form			×	1
Form	4	Cut-off channel(s)					X	0429
Adjustment	5	Formation of island((s)		·		X	UTIO 1
(P1)	6	Thalweg alignment of	out of phase	with meander form			×	
	7	Bar forms poorly for	med / rewor	ked / removed		X		
*****					Sum of indices =			
Additional note	2S :			Stability In	dex (SI) = (AI+D	I+WI	+PI)/4 =	0.19
Minimal		reamorphic	Condition	In Regime	In Transition/St	ess	In Adjus	stment
a.t.i.i.t.	· ·		SI score =	A 0.00 - 0.20	0.21 - 0.40)		.41

Completed by: _____ Checked by: ____

GEO MORPHIX Georgeptedagy Earth Serince

General Site Characteristics

Project Code: 22063

Date:		2022-07	-27	Stream/Reach:	H152
Weat	her:	And the second sec		Location:	Mt Hope
Field	Staff:	JT MK		Watershed/Subwatershed:	20 Mile Crk
Weat Field Featu X S Flow Flow H1 H2 H3 H4 H5 H6 H7 H8 H9 Substr S1 S2 S3 S4 S5	her: Staff: res Reach break Cross-section Flow direction Riffle Pool Medial bar Eroded bank Undercut bank Rip rap/stabilization Leaning tree Fence Culvert/outfall Swamp/wetland Grasses Tree Instream log/tree Woody debris Station location Vegetated island Ype Standing water Scarcely perceptible Smooth surface flow Upwelling Rippled Unbroken standing water Scarce fall Tree fall Tate Silt Sand Gravel Small cobble Large cobble	y/gabion flow wave ve S6 Small boulder S7 Large boulder S8 Bimodal S9 Bedrock/till	concrede bax cylvert	Location: Watershed/Subwatershed:	Mt Hope 20 Mile (rk Nove No
Other BM BS DS WDJ VWC BOS TOS	Benchmark Backsight Downstream Woody debris jam Valley wall contact Bottom of slope Top of slope	 EP Erosion pin RB Rebar US Upstream TR Terrace FC Flood chute FP Flood plain KP Knick point 		Additional Notes:	Scale:

																ocphic	_	~	es à		
×						5						Rootlets				A ROM	D	7: YOW	hton		1
RPH	<i>1</i> 6					ota: N: N		able 16)	(Table 17)			Parent				Nevial	A.	21:0	SUraid		
0 Σ	Geomorpholo Earth Science Observations					LON	ality	Odour (1	Turbidity			Boulder				Notes: M	activ	- NO ON	pup		hecked by
GEO						idence:	Water Qua					Cobble				osion	%0%	100%	Lor. La	Necto	Nitch
				Crk		Ev		35	50m: .25			Gravel				Bank Ero	2 - 3(2 - 3(2 - 1)	09	ch- de	VLOIAN	. de
	063	4	hepe	Nile		oundwater		of Reach (%)	wDJ/			lt Sand				ank Angle	30-60 60-90] Undercut	-1 600	1 s 2	roud -
	e: 22	H15:	M	20		BGr	etation	Coverage o	Mod High]		Clay/Si	e.	e.	শ্ব	co lé	3 LI L	19	trut !!	Catto	Com
	roject Cod			tershed:)	w Type able 5)	nstream Veg	le8)	t in Cutbank t in Channel		-		iffle Substra	ool Substra	nk Material	99.0	0,15	ude:	its: inter	Rense	Mosth
	ď	/Reach:	:u	hed/Subwa	ownstream	e E	Aquatic/I	Type (Tab Woody D	Resen			hannels	-		Bai			nder Amplit	Commer	ted	1
		Stream	Locatio	Waters	UTM (E	Table 4)		nent: ble 7)	4			lumber of Cl	Table 12)			14.0	0.3	0\0 Mea	E	DV / Estima	
						Chan		Encroachr (Ta	() () ()			2		ification	\sim	d Width (m	d Depth (m	ools:	Undercuts (ffle ball / A	
		4				Type		sss (yrs): nature (<5)	blished (5-3) ture (>30)			adient	ble 11)	owns's Class	ible 15)	53 Wette	45 Wette	10 %1	Ma	N N	
		6- t				Channel 7 (Tab		Age Cla	0 🛛 Esta			se) Gr	(Ta	ailure D	(Ta		0	S Riffles:	Length (m)		
		0-2		MK				Channel widths	d - 4-11			osity (Degr	able 10)	oe of Bank F	able 14)	19	6	W/0- 34	Riffle		
	acteristic	202		121	s	Vailey Type (Table 2)		werage: None	Fragmente Continuous		tics	Sinu	-	Tyl	5	L.	00	Î.	0	O	
	each Char			fft:	stream)	1) Se []	Vegetation	Type: Cc 3/4 □	5		Characterist	(Type)	le 9)	ment	e 13)	Nidth (m)	Depth (m)	ol Spacing (th (m)	(m/s)	
	R¢	Date:	Weather	Field Stat	UTM (Up	Land U: (Table :	Riparian	Dominant (Table 6)	Species:		Channel	Sinuosity	(Tab	Entrench	(Table	Bankfull /	Bankfull I	Riffle/Po	Pool Dep	Velocity (

Rapid Stream Assessment Technique

Project Code: 22063

Date:	2022-07-27	Stream/Reach:		H152	
Weather:		Location:		20 M:1	e creek
Field Staff:	JT MK	Watershed/Subwate	rshed:	ME H	10-2
Evaluation Category	Poor	Fair		Good	Excellent
	 < 50% of bank network stable Recent bank sloughing, slumping or failure frequently observed 	 50-70% of bank network stable Recent signs of bank sloughing, slumping or failure fairly common 	 71-80% stable Infreque sloughir failure 	o of bank network ent signs of bank ng, slumping or	 > 80% of bank network stable No evidence of bank sloughing, slumping or failure
Channel	 Stream bend areas highly unstable Outer bank height 1.2 m above stream bank (2.1 m above stream bank for large mainstem areas) Bank overhang > 0.8-1.0 m 	 Stream bend areas unstable Outer bank height 0.9- 1.2 m above stream bank (1.5-2.1 m above stream bank for large mainstem areas) Bank overhang 0.8-0.9m 	 Stream Outer bi m above 1.5 m a for large Bank ov 	bend areas stable ank height 0.6-0.9 e stream bank (1.2- bove stream bank e mainstem areas) rerhang 0.6-0.8 m	 Stream bend areas very stable Height < 0.6 m above stream (< 1.2 m above stream bank for large mainstem areas) Bank overhang < 0.6 m
Stability	 Young exposed tree roots abundant > 6 recent large tree falls per stream mile 	 Young exposed tree roots common 4-5 recent large tree falls per stream mile 	Exposed tree roots old, large and woody • Generally 0-1 recent large tree falls per stream mile		
	 Bottom 1/3 of bank is highly erodible material Plant/soil matrix severely compromised 	Bottom 1/3 of bank is generally highly erodible material Plant/soil matrix compromised	 Bottom generall plant/so 	1/3 of bank is y highly resistant il matrix or material	 Bottom 1/3 of bank is generally highly resistant plant/soil matrix or material
	 Channel cross-section is generally trapezoidally- shaped 	Channel cross-section is generally trapezoidally- shaped	 Channel generall 	cross-section is y V- or U-shaped	Channel cross-section is generally V- or U-shaped
Point range	0 0 1 0 2	030405	□ 6	07128	09010011
	 > 75% embedded (> 85% embedded for large mainstem areas) 	 50-75% embedded (60- 85% embedded for large mainstem areas) 	• 25-49% 59% em mainste	embedded (35- bedded for large m areas)	Riffle embeddedness < 25% sand-silt (< 35% embedded for large mainstem areas)
	 Few, if any, deep pools Pool substrate composition >81% sand- silt 	 Low to moderate number of deep pools Pool substrate composition 60-80% sand-silt 	 Moderat pools Pool sub 30-59% 	e number of deep ostrate composition sand-silt	 High number of deep pools 61 cm deep) 122 cm deep for large mainstem areas) Pool substrate composition <30% sand-silt
Channel Scouring/ Sediment Deposition	 Streambed streak marks and/or "banana"-shaped sediment deposits common 	 Streambed streak marks and/or "banana"-shaped sediment deposits common 	 Streamb and/or " sedimen uncomm 	bed streak marks banana"-shaped of deposits	Streambed streak marks and/or "banana"-shaped sediment deposits absent
	 Fresh, large sand deposits very common in channel Moderate to heavy sand deposition along major portion of overbank area 	 Fresh, large sand deposits common in channel Small localized areas of fresh sand deposits along top of low banks 	 Fresh, la uncomm Small lo fresh sa top of lo 	arge sand deposits non in channel calized areas of nd deposits along w banks	 Fresh, large sand deposits rare or absent from channel No evidence of fresh sediment deposition on overbank
	 Point bars present at most stream bends, moderate to large and unstable with high amount of fresh sand 	 Point bars common, moderate to large and unstable with high amount of fresh sand 	 Point ba well-veg armoure fresh sat 	rs small and stable, letated and/or ed with little or no nd	Point bars few, small and stable, well-vegetated and/or armoured with little or no fresh sand
Point range	0 0 1 0 2	0304		5 🕱 6	

Date:		Reach: Project Code		Project Code:					
Evaluation Category	Poor	Fair		Go	od		Excellent		
	Wetted perimeter < 40% of bottom channel width (< 45% for large mainstem areas)	 Wetted perimeter 60% of bottom ch width (45-65% fo mainstem areas) 	40- annel r large	• Wetted perim of bottom cha (66-90% for mainstem are	neter 61-85% annel width large eas)	 Wetted perimeter > 85% of bottom channel width 90% for large mainstem areas) 			
	• Dominated by one habitat type (usually runs) and by one velocity and depth condition (slow and shallow) (for large mainstem areas, few riffles present, runs and pools dominant, velocity and depth diversity low)	 rew poors present, rimes and runs dominant. Velocity and depth generally slow and shallow (for large mainstem areas, runs and pools dominant, velocity and depth diversity intermediate) 		 Good mix bet runs and poo Relatively div and depth of 	ween riffles, ls erse velocity flow	 Riffles, runs and pool habitat present Diverse velocity and de of flow present (i.e., slo fast, shallow and deep water) 			
Physical Instream	 Riffle substrate composition: predominantly gravel with high amount of sand 5% cobble 		 Riffle substrate composition: predominantly small cobble, gravel and sand 5-24% cobble 		 Riffle substrate composition: good mix of gravel, cobble, and rubble material 25-49% cobble 		e substrate position: cobble, /el, rubble, boulder mix I little sand 0% cobble		
Habitat	Riffle depth < 10 cm for large mainstem areas	Riffle depth 10-15 large mainstem ar	cm for reas	 Riffle depth 1 large mainster 	5-20 cm for m areas	• Riffl larg	e depth > 20 cm for e mainstem areas		
	Large pools generally < 30 cm deep (< 61 cm for large mainstem areas) and devoid of overhead cover/structure	 Large pools gener 46 cm deep (61-9 for large mainster areas) with little o overhead cover/st 	ally 30- 1 cm n r no ructure	 Large pools g cm deep (91- large mainste some overhea cover/structu 	enerally 46-61 122 cm for em areas) with ad re	 Larg cm larg good cove 	e pools generally > 61 deep (> 122 cm for e mainstem areas) with d overhead er/structure		
	• Extensive channel alteration and/or point bar formation/enlargement	 Moderate amount of channel alteration and/or moderate increase in point bar formation/enlargement 		 Slight amoun alteration and increase in po formation/enl 	t of channel I/or slight bint bar argement	 No o sign form 	channel alteration or ificant point bar nation/enlargement		
(• Riffle/Pool ratio 0.49:1 ; ≥1.51:1	 Riffle/Pool ratio 0. 0.69:1 ; 1.31-1.5 	5- 1	• Riffle/Pool rat ; 1.11-1.3:1	io 0.7-0.89:1	• Riffl	e/Pool ratio 0.9-1.1:1		
	• Summer afternoon water temperature > 27°C	 Summer afternoor temperature 24-2 	n water 7°C	Summer afternoon water temperature 20-24°C		 Sum tem 	nmer afternoon water perature < 20°C		
Point range	0 1 1 2			05	□ 6		□ 7 □ 8		
	 Substrate fouling level: High (> 50%) 	 Substrate fouling Moderate (21-50%) 	evel: 6)	 Substrate fou Very light (11 	ling level: -20%)	• Sub Roci	strate fouling level: < underside (0-10%)		
Water Quality	 Brown colour TDS: > 150 mg/L 	 Grey colour TDS: 101-150 mg 	/L	Slightly grey TDS: 50-100	colour mg/L	CleaTDS	r flow : < 50 mg/L		
water Quanty	Objects visible to depth < 0.15m below surface	Objects visible to 0.15-0.5m below	depth surface	Objects visible to depth 0.5-1.0m below surface		• Obje > 1.	ects visible to depth Om below surface		
	Moderate to strong organic odour	 Slight to moderate organic odour 	•	 Slight organic 	: odour	• No c	odour		
Point range	0 0 1 0 2		11.6	D 5	6		₫ 7 □ 8		
Riparian Habitat	Narrow riparian area of mostly non-woody vegetation	 Riparian area predominantly wo but with major loc gaps 	oded alized • Forested buffer generally • Wide (> 31 m wide along major portion of both banks • banks		e (> 60 m) mature sted buffer along both <s< td=""></s<>				
ConditionsCanopy coverage: <50% shading (30% for large mainstem areas)Canopy coverage: 60% shading (30-44% for large mainstem areas)Canopy coverage: 60% shading (30-44% for large mainstem areas)Canopy coverage: >80% shading large mainstem areas)		opy coverage: % shading (> 60% for e mainstem areas)							
Point range	□0 1	0203		□ 4	. 5		□ 6 □ 7		
Total overall score (0-42) = 73		Poor (<13)	Fa	air (13-24) Good (25-3			34) Excellent (>35)		

Completed by: ____ Checked by: __

GEO	м	0	R	Ρ	н	I	х	
-----	---	---	---	---	---	---	---	--

Rapid Geo	morp	hic Assessment		Project C	ode: 2206	3		
Date:	2	022-07-1	27 Stre	am/Reach:	HISZ			
Weather:			Wat	ershed/Subwaters	hed: 20 M:	2 6	nerek	
Field Staff:	5	IT MK	Loca	ition:	M+ No	pe		
Process		(Geomorpholo	gical Indicator		Pre	sent?	Factor
Process	No.	Description				Yes	No	Value
	1	Lobate bar					×	
	2	Coarse materials in	riffles ember	dded			X	
Evidence of	3	Siltation in pools				×		
Aggradation	4	Medial bars					X	0,167
(A1)	5	Accretion on point b	ars				×	
	6	Poor longitudinal so	rting of bed	materials			×	
	7	Deposition in the ov	erbank zone				X	1
					Sum of indices =			
	1	Exposed bridge foot	ing(s)					
	2	Exposed sanitary / s	storm sewer	/ pipeline / etc.				1
	3	Elevated storm sew	er outfall(s)	<u>, p.p.e</u>				-
	4	Undermined gabion	baskets / co	ncrete aprons / etc.				
Evidence of	5	Scour pools downst	ream of culve	erts / storm sewer ou	utlets		x	-
(DI)	6	Cut face on bar forn	ns				×	16
(/	7	Head cutting due to	knickpoint n	nigration			X	10
	8	Terrace cut through	older bar m	aterial			×	1
	9	Suspended armour	layer visible	in bank			×	1
	10	Channel worn into u	indisturbed o	verburden / bedrock			×	1
					Sum of indices =			
	1	Fallen / leaning tree	s / fence pos	sts / etc.			X	
	2	Occurrence of large	organic debi	ris			X	
	3	Exposed tree roots					X	1
Evidence of	4	Basal scour on insid	e meander b	ends			×]
Widening	5	Basal scour on both	sides of cha	nnel through riffle			×]
(WI)	6	Outflanked gabion b	askets / con	crete walls / etc.			×	6
	7	Length of basal scou	ur >50% thro	ough subject reach			×	
	8	Exposed length of p	reviously bui	ried pipe / cable / etc			X	
	9	Fracture lines along	top of bank				X	
	10	Exposed building for	Indation	·····				
					Sum of indices =			<u> </u>
	1	Formation of chute(s)			*		
Evidence of	2	Single thread chann	el to multiple	e channel		×		1
Planimetric	3	Evolution of pool-riff	fle form to lo	w bed relief form			×	-
Form	4	Cut-off channel(s)					λ	
Adjustment	5	Formation of island(s)			×	£	0.57
(11)	6	Thalweg alignment of	out of phase	with meander form			Х	
	7	Bar forms poorly for	med / rewor	ked / removed		X		
					Sum of indices =			
Additional note	s:			Stability Ir	ndex (SI) = (AI+DI	+WI+F	PI)/4 =	0,187
			Condition	In Regime	In Transition/Stre	ess	In Adjus	stment
			SI score =	2 0.00 - 0.20	0.21 - 0.40			.41

Rapid Geo	morp	hic Assessmen	t	Project C	ode: 2206	3		
Date:	-	2022-07	-27 Str	eam/Reach:	11153			
Weather:			Wat	tershed/Subwaters	hed: 22 N	1.10	(may	le
Field Staff:	-	ST MK	Loc	ation:	MFH	lop	2	
Process			Geomorphol	ogical Indicator		Pre	esent?	Factor
FIOCESS	No.	Description				Yes	No	Value
	1	Lobate bar					×	
	2	Coarse materials in	riffles embe	dded	a	×		-
Evidence of	3	Siltation in pools				X		1
Aggradation	4	Medial bars					×	0,420
(AI)	5	Accretion on point	bars			X		1
	6	Poor longitudinal so	orting of bed	materials			×	1
	7	Deposition in the o	verbank zon	9			×	-
					Sum of indices =			
	1	Exposed bridge foo	ting(s)					1
	2	Exposed sanitary /	storm sewer	/ pipeline / etc.		X		-
	3	Elevated storm sew	ver outfall(s)		·····		×	-
	4	Undermined gabior	baskets / co	oncrete aprons / etc.				1
Evidence of	5	Scour pools downst	ream of culv	erts / storm sewer ou	utlets		×	1 .
(DI)	6	Cut face on bar for	ms				x	0.125
	7	Head cutting due to	knickpoint	migration			×	Ĩ
	8	Terrace cut through	n older bar m	aterial			×	
	9	Suspended armour	layer visible	in bank			×	
	10	Channel worn into	undisturbed	overburden / bedrock			×	
					Sum of indices =			
	1	Fallen / leaning tree	es / fence po	sts / etc.			X	1
	2	Occurrence of large	organic deb	ris			×	
	3	Exposed tree roots				X		
F : 1	4	Basal scour on insid	le meander b	pends			X	
Evidence of Widening	5	Basal scour on both	sides of cha	nnel through riffle			×	
(WI)	6	Outflanked gabion l	oaskets / cor	icrete walls / etc.		~		0.333
	7	Length of basal sco	ur >50% thr	ough subject reach			×	
	8	Exposed length of p	previously bu	ried pipe / cable / etc		×		1
	9	Fracture lines along	top of bank			K		
	10	Exposed building fo	undation				×	
					Sum of indices =			
	1	Formation of chute((s)				×	
Evidence of	2	Single thread chann	el to multipl	e channel			×	
Planimetric	3	Evolution of pool-rif	fle form to lo	w bed relief form			×	
Form	4	Cut-off channel(s)					×	A 143
Adjustment (PI)	5	Formation of island	(s)		· ·		×	0.11
	6	Thalweg alignment	out of phase	with meander form			X	
	7	Bar forms poorly for	rmed / rewor	ked / removed		X		
				· · · · · · · · · · · · · · · · · · ·	Sum of indices =			
Additional notes	5:			Stability In	dex (SI) = (AI+DI-	+WI+	PI)/4 =	0.257
		·····	Condition	In Regime	In Transition/Stre	SS	In Adjus	tment
			SI score =	□ 0.00 - 0.20	0.21 - 0.40			41
		······································			0140	1	U U,	- T

Completed by: _____ Checked by: _____

Rapid Stream Assessment Technique

Project Code: 22063

Date:	2022-07-27	Stream/Reach:	H153		
Weather:		Location:	20 Mile	c Creek	
Field Staff:	JT MK	Watershed/Subwate	rshed: Mt Ho	Pe	
Evaluation Category	Poor	Fair	Good	Excellent	
	 < 50% of bank network stable Recent bank sloughing, slumping or failure frequently observed 	 50-70% of bank network stable Recent signs of bank sloughing, slumping or failure fairly common 	 71-80% of bank network stable Infrequent signs of bank sloughing slumping or failure 	 > 80% of bank network stable No evidence of bank sloughing, slumping or failure 	
Channel	 Stream bend areas highly unstable Outer bank height 1.2 m above stream bank (2.1 m above stream bank for large mainstem areas) Bank overhang > 0.8-1.0 m 	 Stream bend areas unstable Outer bank height 0.9- 1.2 m above stream bank (1.5-2.1 m above stream bank for large mainstem areas) Bank overhang 0.8-0.9m 	Justable Justable Duter bank height 0.9- L.2 m above stream Jank (1.5-2.1 m above stream Jank for large mainstem areas) Bank overhang 0.8-0.9m		
Stability	 Young exposed tree roots abundant > 6 recent large tree falls per stream mile 	 Young exposed tree roots common 4-5 recent large tree falls per stream mile 	Exposed tree roots predominantly old and large, smaller young roots scarce 2-3 recent large tree falls per stream mile	 Exposed tree roots old, large and woody Generally 0-1 recent large tree falls per stream mile 	
	 Bottom 1/3 of bank is highly erodible material Plant/soil matrix severely compromised 	Bottom 1/3 of bank is generally highly erodible material Plant/soil matrix compromised	• Bottom 1/3 of bank is generally highly resistant plant/soil matrix or material	Bottom 1/3 of bank is generally highly resistant plant/soil matrix or material	
	 Channel cross-section is generally trapezoidally- shaped 	 Channel cross-section is generally trapezoidally- shaped 	Channel cross-section is generally V- or U-shaped	Channel cross-section is generally V- or U-shaped	
Point range	0 0 1 0 2	030405	06 8 7 0 8	9 10 11	
	 > 75% embedded (> 85% embedded for large mainstem areas) 	 50-75% embedded (60- 85% embedded for large mainstem areas) 	• 25-49% embedded (35- 59% embedded for large mainstem areas)	 Riffle embeddedness < 25% sand-silt (< 35% embedded for large mainstem areas) 	
	 Few, if any, deep pools Pool substrate composition >81% sand- silt 	 Low to moderate number of deep pools Pool substrate composition 60-80% sand-silt 	 Moderate number of deep pools Pool substrate composition 30-59% sand-silt 	 High number of deep pools 61 cm deep) 122 cm deep for large mainstem areas) Pool substrate composition <30% sand-silt 	
Channel Scouring/ Sediment Deposition	 Streambed streak marks and/or "banana"-shaped sediment deposits common 	 Streambed streak marks and/or "banana"-shaped sediment deposits common 	 Streambed streak marks and/or "banana"-shaped sediment deposits uncommon 	• Streambed streak marks and/or "banana"-shaped sediment deposits absent	
	 Fresh, large sand deposits very common in channel Moderate to heavy sand deposition along major portion of overbank area 	 Fresh, large sand deposits common in channel Small localized areas of fresh sand deposits along top of low banks 	 Fresh, large sand deposits uncommon in channel Small localized areas of fresh sand deposits along top of low banks 	 Fresh, large sand deposits rare or absent from channel No evidence of fresh sediment deposition on overbank 	
	 Point bars present at most stream bends, moderate to large and unstable with high amount of fresh sand 	 Point bars common, moderate to large and unstable with high amount of fresh sand 	• Point bars small and stable, well-vegetated and/or armoured with little or no fresh sand	 Point bars few, small and stable, well-vegetated and/or armoured with little or no fresh sand 	
Point range	00102	0304	□ 5 ⊠ 6	0708	

Date:		Reach:	1-11 53	d Fostell	Project Code:			
Evaluation Category	Poor	Fair		Go	bod	Excellent		
	 Wetted perimeter < 40% of bottom channel width (< 45% for large mainstem areas) 	Wetted perime 60% of botton width (45-65% mainstem area	eter 40- n channel % for large as)	Wetted perin of bottom ch (66-90% for mainstem ar	neter 61-85% annel width large eas)	 Wetted perimeter > 85% of bottom channel width (> 90% for large mainstem areas) 		
	 Dominated by one habitat type (usually runs) and by one velocity and depth condition (slow and shallow) (for large mainstem areas, few riffles present, runs and pools dominant, velocity and depth diversity low) 	 Few pools pre- and runs dominant Velocity and digenerally slow shallow (for la mainstem area and pools dominant velocity and diversity inter 	sent, riffles nant. epth and rge as, runs ninant, epth mediate)	Cood mix be runs and poo Relatively div and depth of	tween riffles, ols verse velocity flow	 Riffles, runs and pool habitat present Diverse velocity and depth of flow present (i.e., slow, fast, shallow and deep water) 		
Physical Instream	Riffle substrate composition: predominantly gravel with high amount of sand < 5% cobble	 Riffle substrate composition: predominantly cobble, gravel 5-24% cobble 	small and sand	 Riffle substra composition: gravel, cobbl material 25-49% cobbl 	ite good mix of e, and rubble ble	 Riffle substrate composition: cobble, gravel, rubble, boulder mix with little sand > 50% cobble 		
Habitat	• Riffle depth < 10 cm for large mainstem areas	Riffle depth 10 large mainster	-15 cm for n areas	Riffle depth 1 large mainste	15-20 cm for em areas	 Riffle depth > 20 cm for large mainstem areas 		
	 Large pools generally < 30 cm deep (< 61 cm for large mainstem areas) and devoid of overhead cover/structure 	 Large pools ge 46 cm deep (6 for large main areas) with litt overhead cove 	nerally 30- 1-91 cm stem le or no r/structure	Large pools of cm deep (91 large mainster some overhe cover/structure	generally 46-61 -122 cm for em areas) with ad ire	 Large pools generally > 6 cm deep (> 122 cm for large mainstem areas) wir good overhead cover/structure 		
	Extensive channel alteration and/or point bar formation/enlargement	 Moderate amo channel altera moderate incre point bar formation/enla 	unt of tion and/or ease in rgement	• Slight amour alteration and increase in p formation/en	it of channel d/or slight oint bar largement	 No channel alteration or significant point bar formation/enlargement 		
	• Riffle/Pool ratio 0.49:1 ; ≥1.51:1	• Riffle/Pool ration 0.69:1 ; 1.31-	0.5- 1,5:1	 Riffle/Pool ratio 0.7-0.89:1 ; 1.11-1.3:1 		• Riffle/Pool ratio 0.9-1.1:1		
	Summer afternoon water temperature > 27°C	Summer aftern temperature 2	100n water 4-27°C	Summer afternoon water temperature 20-24°C		 Summer afternoon water temperature < 20°C 		
Point range	0 0 1 0 2	□ 3 <u>¢</u>	K 4	□ 5	□ 6	0708		
	Substrate fouling level: High (> 50%)	 Substrate fouli Moderate (21- 	ng level: 50%)	 Substrate for Very light (1) 	uling level: L-20%)	Substrate fouling level: Rock underside (0-10%)		
Water Quality	 Brown colour TDS: > 150 mg/L 	Grey colourTDS: 101-150	mg/L	 Slightly grey TDS: 50-100 	colour mg/I	Clear flow TDS: < 50 mg/L		
Water Quality	Objects visible to depth < 0.15m below surface	Objects visible 0.15-0.5m bel	to depth ow surface	Objects visible to depth 0.5-1.0m below surface		 Objects visible to depth 1.0m below surface 		
	Moderate to strong organic odour	 Slight to mode organic odour 	rate	 Slight organic 	c odour	• No odour		
Point range	00102	3	□ 3 □ 4		□ 6	₽708		
Riparian Habitat	Narrow riparian area of mostly non-woody vegetation	 Riparian area predominantly but with major gaps 	Riparian area predominantly wooded but with major localized gaps		er generally along major th banks	 Wide (> 60 m) mature forested buffer along both banks 		
Habitat Conditions	Canopy coverage: <50% shading (30% for large mainstem areas)	 Canopy covera 60% shading (for large mains areas) 	ge: 50- 30-44% stem	 Canopy cover 60-79% shad for large main 	rage: ling (45-59% nstem areas)	Canopy coverage: >80% shading (> 60% for large mainstem areas)		
Point range		02	3	□ 4	□ 5	□ 6 □ 7		
Total overall s	score (0-42) = 25	Poor (<13) Fa	air (13-24)	Good (25-3	34) Excellent (>35)		

Completed by: _____ Checked by: ____

Appendix E Detailed Assessment Summary

GEO

MORPHIX

Earth Science Observations

Detailed Geomorphological Assessment Summary

Reach H1S3

Project Number:	PN22063	Date:	2022-07-27
Client:	Fengate	Length Surveyed (m):	57.5
Location:	Hamilton - Mount Hope	# of Cross-Sections:	7

Reach Characteristics									
Drainage Area:	48 ha		Dominant Riparian Vegetation Type:	Grasses/Herbaceous Plants					
Geology/Soils:	Clay-Silt		Extent of Riparian Cover:	Continuous					
Surrounding Land Use: Commerical + Inc		dustrial	Width of Riparian Cover:	4-10 Channel Widths					
Valley Type:	Confined		Age Class of Riparian Vegetation:	Immature (<5yrs)					
Dominant Instream Veg	etation Type:	Cattails	Extent of Encroachment into Channel:	Minimal					
Portion of Reach with Vegetation:		15%	Density of Woody Debris:	Low					

Hydrology			
Measured Discharge (m ³ /s):	Minimal Flows	Calculated Bankfull Discharge (m ³ /s):	0.35
Modelled 2-year Discharge (m ³ /s):	Not modelled	Calculated Bankfull Velocity (m/s):	0.92
Modelled 2-year Velocity (m/s):	Not modelled		

Profile Characteristics		Planform Characteristics	
Bankfull Gradient (%):	1.23	Sinuosity:	1.15
Channel Bed Gradient (%):	1.58	Meander Belt Width (m):	Not measured
Riffle Gradient (%):	Not measured	Radius of Curvature (m):	Not measured
Riffle Length (m):	Not measured	Meander Amplitude (m):	Not measured
Riffle-Pool Spacing (m):	Not measured	Meander wavelength (m):	Not measured

Longitudinal Profile

Bank Characteristics

	Minimum	Maximum	Average		Minimum	Maximum	Average
Bank Height (m):	0.28	1.70	0.62				
Bank Angle (deg):	30	90	59	Torvane Value (kg/cm ²):		Not measured	
Root Depth (m):	0.05	0.80	0.20	Penetrometer Value (kg/cm ³):		Not measured	
Root Density (%):	5	40	14	Bank Material (range):		Silt-Clay	
Bank Undercut (m):	0.00	0.18	0.05				

Cross-Sectional Characteristics

	Minimum	Maximum	Average
Bankfull Width (m):	1.00	2.54	1.61
Average Bankfull Depth (m):	0.21	0.30	0.24
Bankfull Width/Depth (m/m):	5	10	7
Wetted Width (m):	0.09	0.54	0.34
Average Water Depth (m):	0.01	0.05	0.03
Wetted Width/Depth (m/m):	5	43	14
Entrenchment (m):		Not measured	
Entrenchment Ratio (m/m):		Not measured	
Maximum Water Depth (m):	0.02	0.09	0.06
Manning's <i>n</i> :		0.046	

Photograph at cross section 3 (looking upstream)

Representative Cross-Section #3

Substrate Characteristics

1

article Size (mm)			Subpavement:				Till								
D ₁₀ :	<2		Particle shape:				Sub-Angular - Sub-Rounded								
D ₅₀ :	<2				Embed	dednes	ss (%)):		60-90					
D ₈₄ :	12.7			Particle range (riffle): Particle Range (pool):				Clay-	Silt						
								Clay-	Silt						
			Cum	ulative F	Particle S	Size Di	istrib	utio	n						
100															
80															
70															
50															
40															\vdash
30		_	\square												\square
				1	1		1 1				1	1		1 1	

Grain size (mm)

100

10

1000

Channel Thresholds								
Flow Competency (m/s):		Tractive Force at Bankfull (N/m ²):	28.43					
for D ₅₀ :	n/a	Tractive Force at 2-year flow (N/m ²):	Not modelled					
for D ₈₄ :	0.64	Critical Shear Stress (D ₅₀) (N/m ²):	0.00					
Unit Stream Power at Bankfull (W/m ²):	26.13							

General Field Observations

Channel Description

Reach H1S3 is a short length of channel that flows northeast towards Willow Valley golf course and discharges into a tributary of Twenty Mile Creek. The channel has evidently been modified, straightened and armoured previously, likely as part of the adjacent sod farm activities. A meandering planform is redeveloping within the channel corridor, and outer banks are typically eroded and exposed. Riparian vegetation was comprised of grasses, cattails, and occasional mature trees. Channel substrate ranges from silty clays within pools to medium-sized gravels within riffles. Bank materials consist of silty clays which increase in compaction moving down towards the toe of the bank slope. Flows during the day of assessment were imperceptible.

Cross Section 4 - Facing Upstream

Appendix F Erosion Modelling Hydrograph

